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Abstract

We explore the conservation of orbital angular momentum (OAM) in the four-wave

mixing (FWM) process in hot rubidium vapor. Since most modern communication

systems send data in pulses corresponding to bits, we can use OAM to encode more

information in each pulse by assigning structure to each signal. Furthermore, because

FWM can be used to generate entangled photon pairs, we can use this process to

bring enhanced signal security. We experimentally studied FWM with a wide range

of Laguerre-Gaussian modes and their superpositions and observed OAM transfer

from the probe field to a generated Stokes field. By studying the output Stokes

intensity and phase distributions, we confirm ` mode (OAM) conservation for pure

` and p modes, as well as for the superpositions of ` and –` for the mode numbers

up to ` = 4, p = 4. We also found that p index is generally not conserved and its

conservation is highly dependent on the relative sizes of the probe and pump beams

in the Rb cell. We also identify parameters to improve FWM gain with OAM transfer

and propose an analytical method for determining OAM p number.



Chapter 1

Introduction

Conventional computer systems send information as electric signals. These signals,

called bits, switch on and off in order to convey a message. The message speed depends

on how fast electrical pulses can move through a cable. However, it is possible to use

light instead of electrons to send more information at once and send that information

faster. This is because, rather than using electrons, we can send information in the

amplitude and phase of light. Currently, fiber optic communication (Figure 1.1) is

Figure 1.1: Information can be sent as
pulses of light through optical fibers. An
electrical signal will trigger a transmitter,
usually a laser or diode, and a receiver
will collect the signal and transform it
back into an electrical signal.

used to allow more rapid information transfer

by sending pulses of light through an optical

fiber [1]. However, light can also carry or-

bital angular momentum (OAM), which can

be used to transmit information even more

efficiently by encoding each photon with dif-

ferent OAM to give each signal a different

meaning [2]. Additionally, entangled quantum states can be used to prevent eaves-

dropping because any unauthorized measurement will affect the quantum state of

the system. Entanglement, described by Albert Einstein as “spooky action at a dis-

tance,” occurs when the state of two objects cannot be described independently of

the other, even if they undergo large spatial separation. This results in increased
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transmission security and in a low error threshold that requires the receiver to know

how to properly measure the incoming signals in order to be able to understand the

message [3].

During my undergraduate research, I have demonstrated that information can be

encoded into beams of light via OAM and that this information can be transferred to

a new field via a nonlinear interaction called four-wave mixing (FWM) due to energy

and momentum conservation. Since FWM results in the generation of a new field

correlated with an input field, any disruptions between them will result in a loss of

information and can be used to ensure the security of the quantum transmission.

Four-wave mixing is a process where two or three light fields interact with atoms

and produce one or two new fields, as shown in Figure 1.2 [4]. In our configuration,

there are two fields, a pump and a probe, that interact and produce a third field, the

Stokes.

Figure 1.2: Traditional four-wave mix-
ing configuration. The pump and probe
interact to produce the Stokes.

Frequency and phase matching conditions are

important for this process, so a single laser

separated into two polarizations is utilized to

control these properties. By using a single

source, there is a greater frequency stability,

so only the angle at which the fields interact

within the medium, 87Rb, and the polariza-

tion of the fields need to be matched. The

four-wave mixing process must also obey the

conservation of orbital angular momentum (OAM). The phase of light rotates as it

propagates, and this OAM must be transferred between fields.

2



OAM conservation can also be used to improve imaging techniques. Classical

imaging is used for defense and medicine to image things like planes and body sys-

tems [5]. However, image resolution, clarity, and functionality are limited by things

such as smoke, turbulence, obstructions, and radiation exposure [6]. Quantum imag-

ing utilizes photon entanglement to subvert these barriers and allow for clear imaging

in situations where classical images would be distorted or unobtainable. As a re-

sult, entangled photons can be used to generate an image from an object where the

probing photon never interacted with the object, allowing for greater freedom in an-

alyzing light-sensitive objects [7]. This technique can distinguish between decoy and

camouflaged aircrafts, provide inexpensive medical imaging, and allow for nanoscale

understanding of active biosystems [8].

3



Chapter 2

Theory

This section will explore the theory of four-wave mixing and orbital angular

momentum.

2.1 Interaction of Light and Atoms

Light and atoms most frequently interact through photon absorption and emission.

When light is absorbed by an atom, it can excite electrons into a higher energy state.

When atoms re-emit photons, electrons must drop down to a lower energy state. This

energy difference ∆E between possible atomic states is given defined by

∆E = ~ω (2.1)

where ω is the light frequency [9].

Resonant light-atom interactions give rise to a number of interesting phenomena.

For this project, we are most interested in exploring the phenomenon of four-wave

mixing (FWM).
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2.2 Four-Wave Mixing

Four-wave mixing (FWM) is a process where two electromagnetic fields interact

in a nonlinear medium to produce one or two new fields and depends on the electric

susceptibility of the medium [10]. It can be used to generate correlated photon pairs

or entangled photons.

Most fields are plane waves, which are defined as

E = E0(z, t)e−iωt+ikzepol (2.2)

where E0 is the electric field, z is the propogation distance, t is time, ω is the light

frequency, k is the wave number, and epol is the polarization vector. The nonlinearity

of an optical medium is traditionally described by different orders of susceptibility

parameters χ(i) defined as

P(t) = ε0(χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t)) (2.3)

where P(t) is defined as the dielectric polarization density.

Figure 2.1: Energy is conserved during FWM

The FWM process is caused by the third order nonlinear susceptibility χ(3). The

generated field is called the Stokes field, and its amplitude (EStokes) is proportional to

5



the medium polarization at the frequency of the stokes field (PStokes) and is related

to the pump and probe amplitudes as

dEStokes
dz

∼ PStokes = ε0χ
(3)
FWM(Epump)

2E∗probe (2.4)

Generation of the new field results from energy and momentum conservation (Figure

2.1), so for an interaction between two laser fields, called the pump and the probe,

one with frequency ωpump and wave vector kpump and the other with frequency ωprobe

and wave vector kprobe, the output frequency will be

ωStokes = 2ωpump − ωprobe (2.5)

with wave vector

kStokes = 2kpump − kprobe (2.6)

Figure 2.2: Our four-wave mixing configuration, where the pump and probe are degener-
ate.

This is because two photons are used from the first field, while one photon is used

from the second field in order to generate the new field, called the Stokes [11]. For this

project, we are studying degenerate FWM, so the frequencies of the pump and probe

6



fields are identical, and the energy conservation is automatically satisfied (Figure 2.2).

This FWM interaction can occur in crystalline structures or within atomic vapor;

for this project, we are studying four-wave mixing interactions within 87Rb because

Rubidium has a single valance electron. This means that we can optically align

spin in order to generate strong coherent resonant interactions, rather than weaker

non-resonant, incoherent, spontaneous interactions [12]. For this rubidium isotope,

optimal FWM occurs at the 5S1/2F = 2→ 5P1/2F
′
= 2 or 5S1/2F = 2→ 5P1/2F

′
= 1

transition.

2.3 Orbital Angular Momentum

Most conventional electromagnetic fields travel as plane waves; this means that

each “slice” of the beam has a uniform intensity distribution. Gaussian beams are

plane waves that have Gaussian intensity profiles, and are thus most intense at the

center. Plane waves can be described as

E(r) = E0e
±ik·r = E0e

±ikxx+kyy+kzz (2.7)

And Gaussian beams have an electric field given by

E(r, z) = E0x̂
w0

w(z)
e
−r2
w(z)2 e−ikz+k

r2

2R(z)
−ψ(z) (2.8)

Where E0 is the amplitude of the electric field, w0 is the beam waist, z is the distance

from the beam’s focus, k is the wave number, R(z) is the radius of curvature, and

ψ(z) is the Guoy phase.

However, light can also carry orbital angular momentum in ` modes, or a twisting

behavior with helical phase. Both plane waves and waves with OAM are shown in Fig-

ure 2.3. This behavior is described as a vortex because there is a phase singularity, or

7



absence of light, in the center of the beam’s structure due to destructive interference

along the central axis. They can also be described by a topological charge, which de-

fines the number of twists the light undergoes within one wavelength [13]. Unlike plane

Figure 2.3: Plane waves carry OAM
` = 0, 1, 2. Light with nonzero OAM
have helical behavior and complete ` cy-
cles within one wavelength.

waves, a “slice” of a beam carrying nonzero

OAM will have the appearance of a

torus.

Meanwhile, p modes describe the radial

distribution of light. These mode structures

appear centered as rings with interchanging

phases. An increase in the p index results in

p additionally rings around the central axis.

LG modes are defined as

LG`
p =

C`
p

w

(
r
√

2

w

)|`|
L|`|p

[
2r2

w2

]
e−

r2

w2 +i(kz+`θ+Φ) (2.9)

where w is the beam waist, L
|`|
p is the Laguerre polynomial, r is the radial distance

from the center of the beam, z is the axial distance from the beam’s waist, and Φ is

the sum of the generalized phase front and Guoy phase. The ` and p modes form an

infinite dimensional basis on which we can encode information (Figure 2.4).
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Figure 2.4: An ` = 2, p = 2 Laguerre Gaussian beam. Laguerre Gaussian beams can be
described by their azimuthal ` number and radial p number. The radial number describes the
number of dark rings around the center of the beam, and the azimuthial number describes
the hole at the center of the beam.

The ` number is difficult to determine from only looking at the image of the beam.

However, p index can be determine by counting the number of dark fringes; the num-

ber of fringes should be equal to the p number.

Azimuthal ` and radial p modes can exist independently, or in superpositions of

fields with ` and p modes present (Figure 2.5).
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Figure 2.5: Examples of fields with OAM. In (a), we see fields with only azimuthial OAM
(row 1), fields with only radial OAM (column 1) and fields with both azimuthial and radial
OAM. in (b), we see fields with superpositions of OAM. Row 1 demonstrates superpositions
of equal radial OAM with no azimuthial OAM. Row 2 demonstrates fields with azimuthial
OAM but no radial OAM. Row 3 shows fields with superpositions of fields with equal p
numbers and equal and opposite ` numbers.

When we have a superposition of fields with OAM, we see that uniform p numbers

add to create a field that is identical to the two original fields. This is because there

is no phase change, and therefore no cancellations leading to different structures in

the electric field. However, because the phases of the modes with opposite OAM are

twisting in opposite directions, when we combine them we see an interference that

arises to a petal-like structure with twice as many petals as ` number due to the

number of twists that occur within one wavelength.

OAM is conserved during four-wave mixing [14]. These conservation laws can all

be derived from Equation 2.4. Since

Epump ∼ ei`pumpφ (2.10)

and

Eprobe ∼ ei`probeφ (2.11)

10



it follows from equation 2.4 that

EStokes ∼ ei(2`pump−`probe)φ (2.12)

thus, the OAM of our Stokes field is

`stokes = 2`pump − `probe (2.13)

For our configuration, we have nonzero OAM on our probe field while our pump field

is a plane wave (` = 0), and thus

`Stokes = −`probe (2.14)

11



Chapter 3

Experimental Arrangement

3.1 Transverse Optical Mode Generation

We use a spatial light modulator (SLM) to generate Laguerre-Gaussian modes

on the probe field. The SLM has a liquid crystal display that we can program in

MATLAB to selectively reflect light to induce phase or generate images on our beam

(Figure 3.1).

Figure 3.1: The liquid crystal display on our SLM can be programmed to reflect light
with different phases. From Thorlabs, Inc.

We can put a flat phase masks on the SLM to reflect plane waves or use a phase

mask to induce ` modes, p modes, or a superposition of ` and p modes as defined in

Section 2.3. We can also use the SLM to image more complex objects, such as the

William & Mary Cypher and the faces of graduate students in our group, as shown

12



in Figure 3.2.

Figure 3.2: Phase masks on our SLM (b) can transform a plane wave (a) into a more
complex beam (c).

We are also able to use the SLM as a Fresnel lens by modulating how light is

reflected to adjust the focus of the probe field relative to the cell or other optics in

our setup.

In order to reliably produce LG modes on our probe field, we first need to de-

termine the position of our beam on the SLM and its intensity profile. This is done

by putting a flat mask on our SLM and sequentially turning pixels on and off and

measuring the total reflection on a photodiode. The photodiode measures zero power

when pixel groups are not reflecting any of our beam, and should otherwise mea-

sure a Gaussian profile when the corresponding pixels are turned on and reflecting

our beam. If the profile is not perfectly Gaussian, or the beam is not in the center

13



of the SLM, our MATLAB program is adjusted accordingly in order to ensure our

phase mask is being applied correctly using the measured intensity profile and Fourier

transformation of our beam (Figure 3.3). Finally, when applying the phase mask, we

choose a corresponding beam waist for our beam. This is because, since the beam

expands for larger ` and p modes, the phase mask needs to be condensed in order for

the entire beam to pick up phase changes.

(a) Our beam profile. (b) The Fourier transformation of our beam.

Figure 3.3: The beam profile and Fourier transform of our beam are used to calibrate our
mode generation. Our beam is not perfectly Gaussian and off-center on our SLM screen.
However, we can use this profile to apply our correction to our phase mask to get clean LG
modes.
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3.2 Experimental Setup

Figure 3.4: A schematic of our experiment. The polarizer separates our laser beam into
two fields with different polarizations. The transmitted field is our probe field and the
reflected field is our pump field. The probe field is sent to our SLM and then focused by a
750 mm lens before intersecting with our pump field in our cell of Rb atoms. We then use
a polarizing beam splitter to separate the Stokes and Probe field from the Pump field, and
an edge mirror to send only our Stokes field to our OAM analyzer setup.

Our experimental setup is shown in Figure 3.4. A single laser is separated into a

pump and probe field after traveling through a polarizer and then polarizing beam

splitter. The polarizer allows us to tune the relative intensity between the pump and

probe fields. After separation, the probe field is sent to the SLM where we can either

reflect it as a plane wave or program the SLM to induce a phase on the probe. The

pump field, meanwhile, is expanded via a telescope to ensure that the pump is larger

than the probe even for large `.
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Phase matching conditions are very important for four-wave mixing. After the

SLM, we send the probe to two alignment mirrors before it is recombined with the

pump. This allows us to more easily make corrections if the SLM height is not exactly

the same as the pump and gives us more freedom in tuning the angle between the

pump and probe fields. This is also why we use a polarizing beam splitter to reflect

the pump; because the pump and probe are in orthogonal polarizations, we can use

the beamsplitter as a mirror for the pump while the probe should be transmitted

through it entirely. Thus, we can tune the angle between the pump and probe to be

as small as necessary without needing to worry about clipping on the edge of an optic.

There is also space to insert a lens on the probe field to focus it at the center of the

cell so that the probe remains much smaller than the pump. The probe is amplified

by the pump during four-wave mixing, and during this process the Stokes is also

generated. Since we are using Gaussian fields, if the pump is not significantly large

than the probe then we can have nonuniform amplification and Stokes generation or

lose information transmitted at the edges of the field (such as in radial p modes).

The pump and probe are then sent into the cell where they can interact. After the

cell, we have a polarizer in place to cut out as much of the pump as possible because

it is much stronger than the probe and Stokes fields. The remaining pump, probe,

and generated Stokes field are then sent to a photodetector or to a camera in order

to measure our fields. The Stokes field can also be diverted to the OAM analyzer

so that we can determine the ` number. This will be described in further detail in

Chapter 4.

3.3 Optimization of Conditions
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Figure 3.5: Our FWM configura-
tion. The pump and probe inter-
sect inside our Rb cell to produce the
Stokes via FWM.

For our experiment, we are studying degener-

ate four-wave mixing in 87Rb. In order to op-

timize four-wave mixing, we tune the angle at

which the pump and probe intersect inside the

Rb cell and then optimize the laser frequency to

have the strongest FWM possible (Figure 3.5).

Figure 3.6(a) shows that the image of all three

optical fields after cell (pump is strongly attenuated). This is done by first optimiz-

ing the alignment of the beams while scanning the laser around the F = 2→ F ′ = 1

or F ′ = 2 transition and then locking the laser to the frequency corresponding to the

strongest Stokes signal. Figure 3.6(b) shows the power of the Stokes field as the laser

frequency sweeps through the F = 2→ F ′ = 1, 2 transition.

Figure 3.6: (a) Our Stokes, pump, and probe fields when FWM is generated. (b) Stokes
power (blue) and Rb reference cell absorption (red) as functions of laser frequency (changing
in time).

We also determined that linear probe polarization perpendicular to the linearly

polarized pump yielded optimal four-wave mixing (Figure 3.7b) and optimal four-

wave mixing occurred at the F = 2→ F ′ = 1 transition (Figure 3.7a).
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(a) We observed strongest Stokes generation
at the F = 2→ F ′ = 1 transition.

(b) We observed strongest Stokes generation
with linear polarization.

Figure 3.7: Transition and Polarization Optimization

We initially began the experiment using a 7.5cm natural abundance Rubidium cell

(meaning that it contains both 87Rb and 85Rb). However, after failing to see Stokes

generation with tight focusing in the 7.5 mm cell (briefly discussed in Section 3.3), we

proceeded to conduct our experiments with a shorter 2.5 cm cell. Stokes generation

with only ` modes and an unfocused probe was conducted in the longer 7.5 mm cell

at 69oC (Figure 3.8a), while Stokes generation with p modes and focused probe fields

was conducted using the shorter 2.5 mm cell at 90oC (Figure 3.8b).
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(a) With the longer cell, we had strongest
FWM gain at 69oC.

(b) With the longer cell, we had strongest
FWM gain at 90oC.

Figure 3.8: Temperature Optimization

We suspect that the longer cell has a lower optimal temperature since, as temper-

ature increases, there are more atoms to interact with light. However, in the longer

cell, the presence of atoms becomes detrimental to, rather than increasing, our sig-

nal since there are more atoms present to absorb light. The dip in Stokes intensity

around 87.50C is unusual; however, it could be due to fluctuations that occurred while

changing temperature or some other phenomena.

3.4 `-Mode Generation

For the first part of our experiment, we studied a configuration where we induced

OAM in ` modes on the probe field using a phase mask and a 750 mm lens to focus

the probe at the center of the cell (where it mixed with the pump field). We also

installed a telescope on the pump field to magnify it 1.67x in order to ensure that

the pump field is larger than the probe even for large ` so that the pump and probe

fields mixed effectively. We were able to observe the generation of a Stokes field due

to FWM and see transfer of OAM from the probe field to the Stokes field (shown in
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Figure 3.9). In 1-6(a), we see the structure of the probe field before any interactions

occur. In 1-6(b), we see the pump and probe after interacting with Rubidium while

the frequency is off resonance so no FWM occurs. In 1-6(c), we see the pump, probe,

and Stokes after the cell when the laser is tuned to a frequency where FWM occurs

and OAM is transferred from the probe to Stokes.

Figure 3.9: We successfully generated a Stokes field via FWM, and saw the transfer of
OAM from the probe field to the Stokes field. `=0 to `=5 OAM (1-6) are shown on the
probe field when the pump field is blocked (a), the pump and probe off resonance (where
no FWM occurs) (b) and when OAM is transfered to the Stokes field via FWM (c).

We can clearly see that the Stokes beam is generated with ` 6= 0 OAM. However,

it is difficult to distinguish what modes we are generating when only looking at the

image of the beam. In order to have a more robust way to classify our fields, we

introduced an OAM analyzer, described in Chapter 4.

3.5 FWM Lens Optimization

We briefly explored FWM behavior when the pump and probe were focused

tightly in our cell of Rubidium vapor to determine if we could generate p modes
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due to the Gouy phase, a phase shift that results from the propagation of focused

Gaussian beams. This was done with a 250mm lens in order for our beam waist,

w = w0(1 + z/zR) to be the e−2 radius in the Raleigh range, zR = πw2
0/λ. The

generation of this additional phase was observed by a group at the University of

Glasgow and the University of Strathclyde [16]. However, we were unable to generate

four-wave mixing with the configuration, possibly due to different phase matching

conditions between non-degenerate and degenerate four-wave mixing and a different

angular configuration.

We also explored conservation of ` and p modes when the probe is focused less

tightly (Figure 3.11a). We have modified our setup slightly to put a telescope on both

the pump and probe so that we can use a greater surface area of the SLM without

introducing a phase shift between the pump and probe when they are first separated

into these two fields (Figure 3.10). We observed slight improvements to the Stokes

power with tighter focusing on the probe (Figure 3.11b).
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Figure 3.10: Our setup for optimizing pump and probe size. A lens on the output of our
fiber coupler results in uniform phase shifts on our telescope, and the pump and probe are
expanded. The probe is then focused to the center of the cell.

Figure 3.11: (a) Stokes produced with `=0 (b) and `=1 (c) probe focused to different sizes
(a) at the center of the cell (where FWM occurs). (b) Stokes power with probe focused to
different sizes at cell center

We also briefly explored the impact of adjusting the focus of our probe field by
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using a lens on the SLM (Figure 3.12).

Figure 3.12: We tried to shift the focus of the probe field by applying a Fresnel lens on the
SLM. However, this resulted in a significant reduction of the Stokes power without many
variations to the power overall for each lens.

There were no significant changes when adjusting lens position. Additionally,

since the Stokes power was much lower when using the Fresnel lens than when not

using the lens, it indicated that the SLM might be altering our beam in some other

way beyond the phase mask and lens focusing. It should be noted that the lens

optimization occurred before the beam was profiled for any needed corrections to the

phase mask. It would be interesting to explore this again with a correction to account

for the beam being off center and not perfectly Gaussian.

3.6 p-Mode Generation and `, p Superpositions

In addition to generating OAM in the form of ` modes on our fields, we success-

fully generated p modes (Figure 3.13) and superpositions of ` and p modes on our
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fields (Figure 3.14). A phase mask to generate the corresponding field was applied

to the SLM and generated the appropriate field on our probe. We then used the

lens conditions found in the previous section to maximize four-wave mixing gain.

We successfully generated Stokes fields that had OAM transfer; however, p mode

transfer was at times difficult to distinguish, especially in the case with higher order

superpositions of ` and p modes.

Figure 3.13: Stokes generation with ` = 0, p = 0, 1, 2, 3, 4, 5. (a) The probe before the cell.
(b) The pump and probe after the cell off resonance where there is no four-wave mixing.
(c) The Stokes field with pump and probe blocked.

The generated Stokes field was weak compared to the amplified probe, so a razor

blade was used to block the pump and probe when the Stokes image was taken to

avoid over-saturating the camera.

In order to simplify the analysis of both ` and p mode components of our fields,

superpositions of ` and p modes were generated by 50/50 superpositions with opposite

` number (`, p,−`, p). Because we had a way to analyze ` number, but not a way

to analyze p number, this meant that we could use preexisting code to confirm `
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mode conservation while we worked to determine p mode conservation as discussed

in Chapter 4.

Figure 3.14: Stokes generation with 50/50 (`, p,−`, p) superpositions with ` = p =
1, 2, 3, 4, 5. (a) The probe before the cell. (b) The pump and probe after the cell off
resonance where there is no four-wave mixing. (c) The Stokes field with pump and probe
blocked.

An interesting observation was that uniformly the Stokes field seemed to be ampli-

fied more strongly on one half of the field, regardless of adjustments to phase matching

conditions. This could be due to the size mismatch between the pump and probe and

should be explored further. It should also be noted that the probe was being imaged

in the near field on a camera placed at a distance equal to that between the lens and

the center of the cell, whereas after the cell the images are taken in the far field after

propagating a long distance and focused onto the camera.
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Chapter 4

OAM Analysis

This chapter describes the methods of analyzing ` and p modes generated by

our four-wave mixing setup. Because the method for analyzing ` modes is better

understood, this chapter will focus more heavily on describing how we analyzed p

mode structures.

4.1 Azimuthal Mode Analysis

Our OAM analyzer consists of a Mach-Zehnder interferometer with a Dove prism

in one of the arms. The Dove prism inverts one of the beams and results in a“petal”

interference pattern where the number of petals is twice the ` number of the beam.

This is because the complex components of the generated fields add to leave only

azimuthal or radial interference [15]. We can then count the ` numbers manually, or,

for greater precision, integrate radially over the petals and fit with a Fourier series.

By integrating the intensity from the center outward, we can minimize errors due to

intensity fluctuations or non-uniform Stokes generation (Figure 4.2).
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Figure 4.1: The OAM analyzer (a) allows us to more easily distinguish the OAM of our
fields by studying the interference of the intensity distribution with itself. (b) Because we
flip the phase with the dove prism, the interference results in “petal” structures. There are
twice as many petals as there are optical phase singularities.

We are then able to conduct Fourier decomposition on the intensity profile to

distinguish the structure of the beam. This is done by fitting the intensity profile

over 2π radians from the center of the interference profile as shown in Figure 4.2.

For lower order ` modes, the fit is very clear, while for higher order ` modes, we are

able to identify the probable structure of the beam and confirm that the OAM of the

probe field was transferred to the Stokes field.

Figure 4.2 1-3(a) shows the field in one arm of our interferometer. Figure 4.2

1-3(b) shows the interference pattern when the two fields are recombined, after one

is rotated 90o. Figure 4.2 1-3(c) show the intensity profile of the interference pattern

intensity from −π to π radians. Figure 4.2 1-3(d) show the percentage of each Fourier

component needed in order to recreate the intensity profile.
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Figure 4.2: The Fourier analysis of our Stokes interference pattern for ` = 1 to ` = 5
(1-4). The Stokes field is shown in (a) and the interference profile is shown in (b). The
intensity profile of the Stokes interference is plotted over 2π radians and fit with a Fourier
series (c). The dominant oscillation frequency corresponds to the ` mode number (d).

We also studied four-wave mixing with superpositions of ` and p modes with

50/50 superpositions of (`, p,−`, p) modes. It should be noted that for these fields,

the OAM analyzer was not necessary because the interference of the ` and −` modes

in the beam resulted in the creation of the petal structures that required the use of

the OAM analyzer for more simple ` modes (Figure 4.3).
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Figure 4.3: (a) Superpositions of equal ` and −` modes with ` = p = 1, 2, 3, 4, 5. (b)
Intensity profile of petal structure and Fourier series fit. (c) ` index from resulting Fourier
series fit.
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For low order ` modes, it is easy to see the lobe structure for ` = 1, 2. For higher

order modes, it becomes more difficult to count the lobes. However, we are able to

use the same methods for fitting the intensity profile to a Fourier series and can see

that for (3, 3,−3, 3), (4, 4,−4, 4), and (5, 5,−5, 5) we fit with the expected Fourier

series and can with reasonable confidence classify the mode correctly.

By doing Fourier decomposition on the beams with mode superpositions, we are

able to see that ` number is still clearly conserved.

4.2 Radial Mode Analysis

After verifying the transfer of azimuthal ` modes, we then moved to studying p

mode transfer. Phase masks for different p modes were applied to the probe field via

the SLM. The intensity variations due to p-modes were extracted from CCD images

by integrating circular cross sections from the center of the beam outward (Figure

4.4).

Figure 4.4: The intensity profile of p modes is taken by integrating circular cross sections
of our beam starting from the center and working outward (a)→(b)→(c). The intensity
profile (d) is then fit to determine the p mode structure.

Fourier decomposition yielded inconsistent results due to a decrease in intensity

in outer rings. As a result, ideal beams simulated by Kangning Yang were used to

fit our data. Since we required the use of a lens to capture the entire Stokes field

on the camera, simple linear regression often failed because the location and size of

30



each ring was compressed. We ultimately decided to use wavelets created from the

simulated data to conduct our fits.

4.2.1 Linear Regression

All of our fits were done with simple linear regression, either using the radial

intensity of the simulated fields or wavelets created from them. This was of the form

Îmeas = β1I1 + β2I2 + β3I3 + β4I4 + C (4.1)

where Imeas is the measured radial intensity, I1, I2, I3, I4 are the radial intensities cor-

responding to simulated fields with p = 1, p = 2, p = 3, and p = 4, β1, β2, β3, β4

are fit coefficients, and C is a constant to account for any background. The simu-

lated intensities were fitted to each experimental field by choosing coefficients that

minimized the mean square error,

MSE =
1

n

n=1000∑
i=1

(Ii − Îi)2 (4.2)

where n is the total number of data points in our intensity curve (1000), Ii is the

actual measured intensity, and Îi is the fitted value of the intensity curve.

4.2.2 Ideal Fitting Fields

We explored two different types of candidates to conduct our fits: fields with ` =

0, p=1,2,3,4 and fields with a 50-50% superposition of ` and p modes (`,p,−`,p) such

that ` = p.
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Figure 4.5: The (a) intensity profiles for simulated beams with ` = 0, p=1,2,3,4 recorded.
The data for all four fields were then used to fit each individual intensity curve to determine
a baseline accuracy of our method. (b) Linear regression yielded fits that varied from the
actual value, and (c) the components of the fit did not correspond to the actual mode. Ad-
ditionally, when (d) conducting regression with wavelets, while we were able to reconstruct
the wavelet profile of the beam, these components (e) also deviated significantly from the
given mode.

We would expect perfect or near-perfect fitting of the simulated data because we

were checking the accuracy of the linear regression and wavelet transform methods

for fitting our data with the same dataset we used to build it. However, due to simi-

larities in the (` = 0, p) fields, both linear regression and wavelet analysis yielded fits

that did not correspond to the ideal optical mode (Figure 4.5).

We then explored beams constructed from a superposition of ` and p modes as a

fitting option (Figure 4.6).
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Figure 4.6: (a) Simulated 50-50 superpositions of fields of the form (`, p,−`, p) with
` = p = 1, 2, 3, 4. The radial intensity of the fields was used to construct fits. The accuracy
of this fit was then initially tested with (a) linear regression and (d) wavelet transformations.
Since the fits indicated the expected p modes for both (c) regular linear regression and (e)
linear regression with wavelets, we elected to conduct our fits with the beams created from
the asymmetric mode superpositions.

Because there were significant improvements to both fitting methods using a su-

perposition of ` and p modes and the intensity and frequency components of each

mode were more distinct, we elected to use the superposition modes for our fits.

4.2.3 Linear Regression

Linear regression was done on both simulated fields with ` 6= p (Figure 4.7) and

experimental fields for ` = 0, p modes (Figure 4.8) and anti-symmetric (`, p,−`, p)

superpositions (Figure 4.9). Changes in beam position between the simulated and
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experimental fields was accounted for by manually selecting the center of each beam.

However, changes in beam size could not be accounted for with simple linear regres-

sion.

Figure 4.7: (a) Simulated stokes field for (2,1,-2,-1), (3,1,-3,1), and (3,2,-3,2) superposi-
tions. (b) The radial intensity of the fields and fit using linear regression. (d) Proportion
of each p-mode fit in the linear regression fit.

The simulated (`, p,−`, p) mode superpositions did not yield a fit indicating the

expected p mode using linear regression. In fact, it was almost uniformly determined

that all Stokes fields were composed of primarily the p = 4 mode in order to yield the

minimum average error due to the fluctuations in the field intensity.
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Figure 4.8: (a) Experimental Stokes field for ` = 0, p = 1, 2, 3, 4. (b) The radial intensity
of the field and linear regression to fit it using simulated data. (c) Proportion of each
p-mode in the linear regression fit.

The experimental ` = 0, p fields did not yield a fit indicating the expected p mode

using linear regression. While the expected result was obtained for p = 1 and p = 4,

the fit deviated substantially from the actual intensity and the predicted value for
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p = 2, 3 deviated from the expected value.

Figure 4.9: (a) Experimental Stokes field for (`, p,−`, p) superpositions. (b) The radial
intensity of the field and linear regression to fit it using simulated data. (c) Proportion of
each p-mode in the linear regression fit.

The experimental (`, p,−`, p) superpositions yielded a fairly accurate fit for (1, 1,−1, 1).

However, this is not true for any of the other superpositions, where we had very in-

accurate fits and p mode predictions that deviated from what we expected.

Since we had large errors and unexpectedly poor results from fitting with linear

regression, we ultimately decided to explore the use of wavelets for fitting our data

since this would allow us to change the scaling for different beam sizes.

4.2.4 Wavelet Analysis

Wavelets are used as an alternative to Fourier transformations because they pro-

vide more localized spatial and frequency information so we can produce a spectrum

of wavelets, rather than a single Fourier transformation [17]. Similar to the Fourier

36



transformation, they take the inner product between a signal and an analyzing func-

tion, called the “mother wavelet” in order to analyze the components in both the

time and frequency domains. This allows us to construct a 2D representation of the

signal so we can shift, stretch, and compress it. It was determined that this method

was advantageous to Fourier decomposition when analyzing p-modes due to changes

in intensity for rings further from the center of the beam and changes to minima and

maxima position with changes to ` number.

Mother wavelets can be constructed from a function ψ such that

cψ = 2π

∫ ∞
−∞

|Ψ(ω)|2

|ω|
dω <∞ (4.3)

where Ψ(ω) is the Fourier transformation of our data, ψ. Our data analysis was

conducted in MATLAB, and as a result our mother wavelet is the Morse wavelet [18].

The transformation of the signal is defined as

S(b, a) =
1√
a

∫ ∞
−∞

ψ′
(
r − b
a

)
s(r)dr (4.4)

where Ψ′ is the complex conjugate of the Morse wavelet and s(r) is the signal, defined

for b ∈ R and a > 0. b gives the time shift of the wavelet and a the scalar shift of the

wavelet. The Fourier transformation of the Morse wavelet is defined as

Ψβ,γ(ω) = U(ω)aβ,γω
βe−ω

γ

(4.5)

where U(ω) is the heaviside step function and

aβ,γ ≡
(
eγ

β

)β/γ
(4.6)

is a normalizing constant [19] We can thus define

ψa,b(r) =
1√
a
ψ

(
r − b
a

)
(4.7)
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and we can reconstruct the transformation

S(b, a) =

∫ ∞
−∞

ψ′a,b(r)s(r)dr (4.8)

The original signal can thus be reconstructed as

s(r) =
1

cψ

∫ ∞
−∞

∫ ∞
−∞

S(b, a)ψa,b(r)
dadb

a2
(4.9)

Most importantly for our data, the wavelet transformation can identify phase

ridge points of the signal in time and space along which there is an inflection point

[20]. This allows us to identify where maxima and minima are occurring, even if we

have very low signal intensity. The scaling of wavelets is shown in Figure 4.10.

Figure 4.10: (1,1,-1,1) superposition wavelet transformations with different scalings. As
the scaling is increased, the wavelet is both stretched and compressed.
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In order to construct our fit, a continuous wavelet transform was conducted on

simulated data provided by Kangning Yang (Figure 4.11). This allowed us to identify

the frequency components and how p-mode intensity changed from the center of the

beam outwards in rings.

Figure 4.11: Simulated superpositions of ` and p modes with |`| = p = 1, 2, 3. (a) shows
the simulated intensity profile, (b) shows one wavelet transform and (c) shows the p number.

This was used to create a basis for linear regression using the wavelet transforma-

tion. The experimental data was converted into a wavelet and a wavelet coefficient
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was selected to ensure that all features were present in the converted data set. We

then used wavelets for p = 1, 2, 3, 4 with 71 different coefficients for each wavelet

grouping in order to fit the data with changes to peak positions and intensities.

The coefficients for each collection of wavelets are then summed and normalized

in order to determine the main components of experimental data such that

Ψmeas = β0 +
4∑
p=1

71∑
w=1

βpwΨpw(r) (4.10)

where β0 is a constant background, p is the radial index, w is the wavelet coefficient,

βpw is the fitting parameter for a given wavelet fpw at mode p and wavelet scaling w.

Fit coefficients were chosen with general linear regression using the wavelets in order

to minimize the mean square error (Equation 4.2)

The accuracy of our fit was once again tested on simulated superpositions of ` 6= p

(`, p,−`, p) modes (Figure 4.12) and experimental data for ` = 0, p (Figure 4.13) and

(`, p,−`, p) modes (Figure 4.14).
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Figure 4.12: Wavelet transform analysis for (a) simulated (`, p,−`, p) superpositions where
` 6= p. (b) The radial intensity is determined, transformed into a wavelet, and then fitted
with wavelets from simulated (`, p,−`, p) fields where ` = p. (c) proportion of each p in the
fit.

Wavelet fitting was successful in fitting superposition fields with p = 0. However,

for (3, 2,−3, 2), the p mode component was identified as p = 1 rather than p = 2

while we had a very low mean square error and high r2 value.
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Figure 4.13: (a) Stokes field with p = 1, 2, 3 and 4. The intensity of the Stokes field is
integrated from the center to the edge of the field and transformed into wavelets. (b) One
wavelet is then selected to be fit with the simulated wavelets with linear regression. (c) The
weights for each simulated wavelet in the linear regression are then normalized to determine
the confidence of each OAM classification.

We obtained a high fit confidence for p = 1, 2, 3, and a reasonably high confidence

for p = 4. However, it should be noted that for larger p numbers, there seem to be

an increase in other modes identified in the field.
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Figure 4.14: Wavelet transform analysis for (a) (`, p,−`, p) superpositions where ` 6= p.
(b) The radial intensity is determined, transformed into a wavelet, and then fitted with
wavelets from simulated (`, p,−`, p) fields where ` = p. (c) proportion of each p in the fit.

Our wavelet transformation fitting method was reasonably successful in identifying

the p mode components of our experimental fields. As the ` and p numbers increased,

we once again saw an increase in other p modes being present in the components of

our field.
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Chapter 5

Results and Conclusions

5.1 Conclusion and Future Plans

We have achieved four-wave mixing with OAM transfer, in which azimuthal and

radial modes were transferred from the probe field to the generated Stokes field.

We have also determined focusing conditions for optimal Stokes field generation and

methods for characterizing both ` and p modes. As a result, we have confirmed that

` modes transfer is conserved during the four-wave mixing process. While we are able

to characterize p modes generated via four-wave mixing, it has been observed that p

mode transfer requires an appropriate pump to probe size ratio and resolution is lost

at higher p numbers.

However, it would be worthwhile to spend more time developing p mode analysis.

There are some questions and inconsistencies that arise as a result of using wavelets

to do linear regression. Since we are analyzing how the frequency components change

in space and scaling each wavelet accordingly, we are able to yield fits that agree

with expected values. However, this is done only after a wavelet is selected from the

experimental data. Changes to the selected wavelet scaling can result in significant

changes to the fit (although scaling with no compression or with limited compression
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typically yields optimal results). This raises questions on the accuracy of the wavelet

fitting method in the case that we do not know the target p mode.

Additionally, we have not completed this analysis with superpositions of different

p modes, and in this case it is likely that we will need to develop a new method to do

this analysis. It would also be useful to confirm our results with (`1, p, `2, p), `1 6= `2

superpositions to determine if the analysis would be useful with this case.

For these reasons, it could be interesting to develop a mode sorting method that is

not purely analytical such as explored by Zho and Fontine, et. al. [21], [22]. We could

also implement a tilted lens projection from circularly symmetric Laguerre-Gaussian

modes to rectangularly symmetric Hermite Gaussian modes [23] to simplify the anal-

ysis of our different mode components.

Finally, we are interested in exploring the introduction of a second pump field to

study Stokes generation with two pump inputs, rather than just one. We expect this

to result in a Stokes generated in the opposite direction, and it would be interesting

to determine OAM transfer and conservation in this case.
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Chapter 6

Public Abstract

6.1 Introduction and Background

Conventional computer systems send information as electric signals. These sig-

nals, called bits, switch on and off in order to convey a message. The message speed

depends on how fast electrons can move through a cable. However, it is possible to use

light instead of electrons to send more information at once and send that information

faster. This is because, rather than sending signals based on the presence of elec-

trons, we can store information in the amplitude and phase of light. Light can carry

orbital angular momentum (OAM) which can be used to transmit information even

more efficiently by encoding each photon with different OAM to give each signal a

different meaning [2]. Additionally, entangled quantum states can be used to prevent

eavesdropping because any unauthorized measurement will affect the system. This

results in a low error threshold that requires the receiver to know how to properly

measure the system in order to be able to understand the message [3].

During my undergraduate research, I have demonstrated that information can be

encoded into beams of light via OAM and that this information can be transferred to a

new field via a nonlinear interaction due to energy and momentum conservation. This
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interaction is called four-wave mixing (FWM). Since FWM results in the generation

of a new field correlated with an input field, any disruptions between them will result

in a loss of information that protects the sender.

6.2 Summary of Results

We have successfully demonstrated four-wave mixing with OAM transfer up to ` =

5, p = 5 by applying phase masks to the probe beam using a spatial light modulator.

We have optimized temperature, focusing, and cell conditions. Furthermore, we have

demonstrated mixing with OAM conservation for superpositions of ` and p modes. A

new method for p mode analysis using wavelets has been developed and is described

in this work.

6.3 Intellectual Merit

This research has the potential to make groundbreaking advances in quantum

information and quantum computing. I hope to further improve the understanding

of nonlinear optics and how it can be used to more effectively send information. I

hope that my research will make substantial advancements in the field of quantum

information while also improving modern information systems and security.

6.4 Broader Impact

This technology will allow for faster, safer communication and distribution of

information. It will make banking, military, and individual communications more

secure because eavesdroppers will be unable to interpret the signals. Technology is

continuously advancing into the quantum realm. As a result, it is important to expose

the general population to quantum phenomenon so they can understand new technol-

ogy. I hope by creating a robust and secure method of information distribution and
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deliberate outreach efforts I will be able to make meaningful advances in increasing

the general knowledge base surrounding quantum optics.
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