Plane wave solutions

Assume $T_{\mu\nu} = 0$.

\[\left\{ \begin{array}{l}
\Box \Box h_{\mu\nu} = 0 \\
\Box \Box h_{\mu\nu} = \Box h_{\mu\nu} = h_{\mu\nu} = 0
\end{array} \right. \]

Linearized Einstein equations in harmonic gauge

We look for plane wave solutions to the set of equations (1).

Plane wave solutions have the form

\[h_{\mu\nu}(x) = \varepsilon_{\mu\nu} \exp(ik \cdot x) + \varepsilon_{\mu\nu}^{*} \exp(-ik \cdot x) \]

where $k \cdot x = k_{\mu} x^{\mu} = k^{\nu} x_{\nu}$, $\varepsilon_{\mu\nu}$ = polarized field tensor, can be complex.

Consider derivatives of $\exp(ik \cdot x)$:

\[\partial_{\alpha} \exp(ik \cdot x) = \frac{\partial}{\partial x^{\alpha}} \exp(ik \cdot x) \]

\[= ik_{\alpha} \frac{\partial}{\partial x^{\alpha}} \exp(ik \cdot x) \]

\[= ik_{\alpha} \delta^{\alpha}_{\mu} \exp(ik \cdot x) \]

\[= ik_{\alpha} \exp(ik \cdot x) \]

Similarly, \(\Box \Box \exp(ik \cdot x) = -k_{\alpha} k^{\alpha} \exp(ik \cdot x) \).

Then the equations (1) imply

\[\left\{ \begin{array}{l}
-k_{\alpha} k^{\alpha} h_{\mu\nu} = 0 \implies \frac{\partial}{\partial x^{\alpha}} h_{\mu\nu} = 0 \\
k_{\mu} \varepsilon_{\mu\nu}^{*} = \frac{1}{2} k_{\nu} \varepsilon_{\mu\nu}
\end{array} \right. \]

Consider the gauge transformations:

\[h_{\mu\nu} \rightarrow h_{\mu\nu} + 2 \varepsilon_{\mu} \xi^{\nu} + 2 \xi_{\nu} \varepsilon_{\mu} \]

\[g^{\mu}(x) = -i \varepsilon_{\mu} \exp(ik \cdot x) + i \varepsilon_{\mu}^{*} \exp(-ik \cdot x) \]

This is equivalent to \(\varepsilon_{\mu\nu} \rightarrow \varepsilon_{\mu\nu} + k_{\mu} \varepsilon_{\nu} + k_{\nu} \varepsilon_{\mu} \).
Under this class of gauge transformations,
\[k^m E^m \rightarrow k^m E^m + k^m k^n E^n (k^m E^m) k^n \]
\[\frac{1}{2} k^m E^m \rightarrow \frac{1}{2} k^m E^m + \frac{1}{2} k^m k^n (k^m E^m) \]
\[= \frac{1}{2} k^m E + k^m(k^m E) \]

\[0 = k^m E^m - \frac{1}{2} k^m E^m \rightarrow k^m E^m - \frac{1}{2} k^m E^m \]

Harmonic gauge condition

Number of independent solutions:
For each \(k^m \) satisfying \(k^n k^m = 0 \),

- \(E_{mn} \) - Symmetric 4x4 matrix
 - 10 components
 - harmonic gauge constraint: \(-4\)
 - remaining gauge freedom: \(-4\)

\[2 \text{ independent polarizations} \]

- Like \(E_{66} \)!

Example: Wave traveling in \(x^3 \)-direction.

\[k^1 = k^2 = 0, \ k^3 = k^0 = K > 0. \]

Harmonic conditions:
\[\{ k^1 E_{1} + k^0 E_{0} = k^2 E_{3} + k^0 E_{0} = 0 \}
\[k^3 E_{3} + k^0 E_{3} = - (k^1 E_{30} + k^0 E_{00}) = \frac{1}{2} k^2 (E_{10} + E_{21} + E_{33} - E_{00}) \]

\[k^3 = k^0 = K \Rightarrow \]
\[\{ E_{1} + E_{0} = E_{3} + E_{0} = 0 \}
\[E_{13} + E_{03} = -(E_{30} + E_{00}) = \frac{1}{2} (E_{11} + E_{22} + E_{33} - E_{00}) \]

\[\Rightarrow \]
\[E_{01} = -E_{31}, \quad E_{02} = -E_{32}, \quad E_{03} = -E_{33}, \quad E_{11}, \ E_{22}, \ E_{33}, \ E_{00} \]

\[\text{dependent on other polarizations} \]
Residual gauge freedom: \(E_{13} \to E_{13} + k E_1 \)
\[E_{23} \to E_{23} + k E_2 \]
\[E_{33} \to E_{33} + 2k E_3 \]
\[E_{00} \to E_{00} - 2k E_0 \]

\(E_{13} = E_{23} - E_{33} - E_{00} = 0 \)

\(\Rightarrow \) unphysical polarizations.

\(\Rightarrow \) Only two components \((E_{11}, E_{12})\) have independent physical significance.

\(E_{01} = -E_{31} = -E_{33} = 0 \)
\(E_{02} = -E_{32} = -E_{33} = 0 \)
\(E_{03} = -\frac{1}{2}(E_{11} + E_{00}) = 0 \)

from harmonic conditions and above gauge choice.

The polarization tensor in this gauge takes the form

\[
E_{\mu\nu} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & E^+ & E_x & 0 \\
0 & E_x & -E^+ & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}_{\mu\nu}
\]

for some \(E^+, E_x \)

Notice that in this gauge, \(K^\mu E_{\mu\nu} = 0 \) \(\Leftrightarrow \) transverse and \(E^\mu E_\mu = 0 \) \(\Leftrightarrow \) traceless

This is called transverse, traceless gauge.

Caution: Notice that we used the equations of motion with \(T_{\mu\nu} = 0 \) in order to deduce \(K_\mu K^\mu = 0 \), which led to \(K^3 = 0 \) here. If \(T_{\mu\nu} = 0 \), we might not be able to simultaneously satisfy the equations of motion \((I.e.\) the linearized Einstein eqs.) and the transverse + traceless conditions here.
Helicity of Gravitational Waves

Consider a rotation by angle θ about the x^3-x^4 axis,

$$A^\mu = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \quad (A^{-1})^\mu = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

The polar tensor tensor transforms as

$$E_{\mu \nu} \rightarrow E'_{\mu \nu} = (A^{-1})^\mu \nu (A^{-1})^\rho \sigma E_{\rho \sigma}$$

Defining

$$E_+ = E_{11} + i E_{12} = -E_{22} + i E_{12}$$
$$f_+ = E_{31} + i E_{32} = -E_{01} + i E_{02}$$

it is straightforward to check that under the rotation

$$E_+ = \exp(\pm 2i \theta) E_+ \iff \text{helicity } \pm 2$$
$$f_+ = \exp(\pm i \theta) f_+ \iff \text{helicity } \pm 1$$
$$E_{33} = E_{33}, \quad E'_{00} = E_{00} \iff \text{helicity } 0$$

Any plane wave which transforms as $\Psi' = e^{i h \theta} \Psi$ under a rotation by θ about the direction of motion is said to have helicity h.

In our analysis of plane wave solutions for $h = 0$, we chose $k^1 = k^2 = 0$, so motion is in the x^3 direction.

We also found that the physical components of $E_{\mu \nu}$ were E_{11} and E_{12}, which could be replaced by the linear combination E_+.

Hence, gravitational waves are decomposed into helicity ± 2, ± 1, 0 parts, but only the helicity ± 2 parts are physical.
As usual, comparison with E&M is useful.

Source-free Maxwell equations: \(\nabla \cdot F^{\mu \nu} = 0 \)
\(\nabla \times (\nabla \times A^\mu - \partial^\mu \phi) = 0 \)

In Lorenz gauge \(\nabla \cdot A^\mu = 0 \), \(\nabla \times F^{\mu \nu} = 0 \)

Gauge transformations \(A^\mu \rightarrow A^\mu + \partial^\mu \phi \) with \(\partial^\mu \partial_\mu \phi = 0 \) preserve the Lorenz gauge condition.

4 propagating degrees of freedom, \(4-1-1 = 2 \)

Lorenz gauge condition
Residual gauge freedom

Under a rotation, \(A^\alpha \rightarrow (\Lambda^{-1})^\alpha \gamma_\mu \Lambda^\mu \)
One factor of \(\Lambda^{-1} \) (rather than two in transformations of \(h_{\mu \nu} \)) \(\rightarrow \) physical plane waves have helicity \(\pm 1 \) in electromagnetism.

(Exercise)

Motion of particles

To consider motion of particles in a background of \(h_{\mu \nu} \), we need to identify how \(h_{\mu \nu} \) appears in the metric tensor \(g_{\mu \nu} \). A natural guess is \([g_{\mu \nu} = \delta_{\mu \nu} + h_{\mu \nu}] \) as in the Newtonian limit studied earlier.

Particles then follow the geodesic equation, with this gauge,

\[\frac{d^2 x^\mu}{dt^2} + \Gamma^\mu_{\nu \lambda} \frac{dx^\nu}{dt} \frac{dx^\lambda}{dt} = 0. \]
Motion of particles in a gravitational wave

Consider a particle initially at rest, \(\frac{dx^0}{dt} = 1, \frac{dx^i}{dt} = 0 \).

The particle follows the geodesic equation,

\[
\frac{d^2 x^m}{dt^2} + \Gamma^m_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt} = 0
\]

\[\Rightarrow \frac{d^2 x^m}{dt^2} + \Gamma^m_{00} \approx 0 \text{ near the initial instant} \]

\[
\Gamma^m_{00} = \frac{1}{2} g^{m i} \left(\partial_0 h_{0i} + \partial_i h_{00} - \partial_i h_{00} \right) + O(h^2)
\]

For a plane wave in transverse-traceless gauge, \(e_{0i} = e_{00} = 0 \).

\[\Rightarrow \Gamma^m_{00} \approx 0. \]

\[\frac{d^2 x^m}{dt^2} \approx 0. \quad \text{Particle at rest remains at rest or at least for short times.} \]

If a particle does not respond to a passing gravitational wave, then how would such a wave be detected?

Answer: Consider a collection of particles,

A physical gravitational wave would be in the form of a wavepacket, i.e., a superposition of plane waves.

For example, consider a superposition of plane waves in the \(x^3 \)-direction,

\[k^m \sim (K, 0, 0, K) \]

\[\eta_{\mu \nu} = \left(\frac{dK}{\tilde{K}(k)} e^{i k (x - t)} \tilde{E}_{\mu \nu}(k) + c.c. \right) \quad \text{complex conjugate} \]

Suppose \(\tilde{E}_{\mu \nu}(k) = E_{\mu \nu} \) independent of \(K \).

Then \(\eta_{\mu \nu} \) has the form \(\eta_{\mu \nu} \equiv f(z-x) E_{\mu \nu} + c.c. \)

\[f(x) \rightarrow \]

\[f(z-x) \rightarrow \]
In transverse traceless gauge,

\[\varepsilon_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \varepsilon^{+} & \varepsilon^{x} & 0 \\ 0 & \varepsilon^{x} & -\varepsilon^{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]

Suppose there are three particles in the x-y plane:

\[x_1 = (0, 0, 0) \quad \text{Assume } \alpha \text{ is small} \]
\[x_2 = (a, 0, 0) \quad \text{compared to the width of the wavepacket} \]
\[x_3 = (10a, 0, 0) \]

The proper distance between these points is:

\[(\Delta s_{xx})^2 = 9r_{xx} \alpha^2 = (1 + h_{xx}) \alpha^2 \]
\[\Delta s_{xx} = \alpha \sqrt{1 + h_{xx}} \approx \alpha (1 + \frac{1}{2} (f(z-t)\varepsilon^+ + c.c.)) \]
\[= \alpha (1 + \text{Re}(f(z-t)\varepsilon^+)) \]

\[(\Delta s_{12})^2 = 9r_{12} \alpha^2 = (1 + h_{12}) \alpha^2 \]
\[\Delta s_{12} = \alpha (1 - \frac{1}{2} (f(z-t)\varepsilon^+ + c.c.)) \]
\[= \alpha (1 - \text{Re}(f(z-t)\varepsilon^+)) \]

As the distance between 1 and 3 shrinks, the distance between 1 and 2 grows, and vice versa.

A circular distribution of particles would be distorted into an ellipsoidal shape:

- \(f(z-t) > 0 \), \(E_+ < 0 \), \(E_x = 0 \) This distortion is the basis of gravitational wave searches.