A cardiac defibrillator delivers 400 Joules of energy by discharging a capacitor which is initially at 10,000 Volts.

(a) What is the capacitance of the capacitor?
(b) Assume that the defibrillator discharges through a resistance of 1500 Ohms (the patient’s body). How long is it before the voltage drops to 1/e of its initial value?
(c) What is the initial current through the patient’s body?
(d) What is the defibrillator voltage one-tenth of a second after the discharge starts?
(e) A capacitor discharged in class had wires sticking up, and the discharge was made by touching a piece of metal to both leads. Defibrillators use paddles, with a much larger surface area than the wires. Why? (Be qualitative)

\[E = \frac{1}{2} CV^2 \]
\[C = \frac{2E_{cap}}{V^2} = \frac{2(400\text{ J})}{(10^4\text{ V})^2} = 8 \times 10^{-6}\text{ F} = 8\mu\text{F} \]

\[\tau = RC = \frac{1500\Omega}{8 \times 10^{-6}\text{ F}} = 0.0125 \text{ s} \]

\[V = V_0 e^{-t/\tau} \]

\[V = \frac{V_0}{e^{t/\tau}} \text{ when } \tau = t \]

\[t = 0.0125 \text{ s} \]

\[V_c = VR \]

\[V(t=0) = V_0 e^{-0/\tau} = V_0 \]

\[V_c = IR \]

\[I = \frac{V}{R} = \frac{10^4\text{ V}}{1500\Omega} = 6.67\text{ A} \]

\[V = V_0 e^{-t/\tau} = (10^4\text{ V})e^{-(0.15)/(0.0125)} = 240\text{ V} \]

\[e) \text{ Larger surface area } \rightarrow \text{ volume of tissue affected is greater } \]

\[\text{the } IR \text{ heating is distributed over larger volume } \rightarrow \text{ reduced temperature rise (due to } Q = mc^2) \rightarrow \text{ less tissue damage.} \]
2. Four resistors are connected to a 40V battery as shown. \(R_1 = 20\) ohms, \(R_2 = 8\) ohms, \(R_3 = 3\) ohms and \(R_4 = 6\) ohms.

(a) Find the equivalent resistance and the current coming out of the battery.
(b) Find the current through, voltage across and power generated by each resistor.
(c) Suppose \(R_1\) burns out. Explain why \(R_2\), \(R_3\) and \(R_4\) do not get brighter or dimmer. (Note: you can recalculate them, or use a more qualitative argument).

\[
\begin{align*}
\text{a) } R_{34} & = \frac{1}{R_3 + R_4} = \frac{1}{3} + \frac{1}{6} = 2\Omega \\
\text{b) } V_1 &= 40V \quad I_1 = \frac{40V}{20\Omega} = 2A \quad P_1 = I_1V_1 = 80W \\
\text{c) } R_{14} & = \frac{1}{R_1 + R_4} = \frac{1}{20} + \frac{1}{10} = \frac{3}{20} \\
I_2 & = \frac{V_2}{R_2} = \frac{8V}{3\Omega} = \frac{8}{3}A \\
P_3 & = I_3V_3 = \left(\frac{8}{3}A\right)(8V) = \frac{64}{3}W \\
P_4 & = I_4V_4 = \left(\frac{4}{3}A\right)(8V) = \frac{32}{3}W \\
\end{align*}
\]
3. These are unrelated short answer questions.

(a)(8) You have a hollow metal sphere. You put a positive charge on the sphere.

Just outside the surface is the direction of the electric field (a) away from the center of the sphere, (b) towards the center of the sphere or (c) zero? Answer here: (a)

Just inside the surface is the direction of the electric field (a) away from the center of the sphere, (b) towards the center of the sphere or (c) zero? Answer here: (c)

(b)(4) Three identical resistors are connected in series. Their equivalent resistance is 12 ohms. If they are disconnected and reattached in parallel, what is their equivalent resistance?

\[
\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{3}{4R} \Rightarrow \frac{1}{R_p} = \frac{4}{3} \Omega
\]

(c)(4) Why do your headlights dim when you start your car engine?

\[V_t = \text{terminal voltage} = E - IR\]

Start motor: I increase \(\Rightarrow V_t \) decreases

\(\Leftrightarrow \) current to headlights

\(\Leftrightarrow \) less power in

(d)(5) Draw electric field lines and equipotential lines in a parallel plate capacitor. Draw them in the diagrams below.

\[+Q \quad \text{Equipotential} \quad -Q\]

(e)(4) A capacitor is charged to a potential of 10 volts. An electron is put at the negative plate and released. It moves to the positive plate. When it reaches the positive plate, what is its kinetic energy?

\[PE = q\Delta V = 10eV\]

\[\Delta V = 1.6 \times 10^{-19} (10\text{V}) = 1.6 \times 10^{-18} \text{J} = 10eV\]

\[\boxed{KE = 10eV}\]
4. In the above diagram, the charges are 6 cm apart. $Q_1 = -1$ microcoulomb and $Q_2 = +2$ microcoulombs. Point A is midway between them, and point B is 3 cm to the left of Q_1.

(a) (10) Find the potential and the electric field at point A.

(b) (10) Find the potential and the electric field at point B.

(c) (5) Draw electric field lines. You should have at least eight lines total.

\[
\begin{align*}
V_A &= \frac{KQ_1}{r_1} + \frac{KQ_2}{r_2} = \frac{K(Q_1 + Q_2)}{r_1} = \frac{9 \times 10^9 \text{ Nm}^2}{c^2} \left(-1 \times 10^{-4} + 2 \times 10^{-4} \right) = 3 \times 10^5 \text{ V} \\
E_A &= \frac{KQ_1}{r_1^2} \quad \text{(vector, has direction)} \quad \text{Call +x direction to the right.} \\
&= \frac{-KQ_1}{r_1^2} = -\frac{K}{r_1^2}(|Q_1| + |Q_2|) = -\frac{9 \times 10^9 \text{ Nm}^2}{c^2} \left(3 \times 10^{-4} \right) = -3 \times 10^7 \text{ N/C} \quad \text{(negative since both individual fields to the left)}
\end{align*}
\]

\[
\begin{align*}
V_B &= \frac{KQ_1}{r_1} + \frac{KQ_2}{r_2} = \frac{K(Q_1 + Q_2)}{r_1} = \frac{9 \times 10^9 \text{ Nm}^2}{c^2} \left(\frac{-1 \times 10^{-4}}{3 \times 10^{-3} \text{m}} + \frac{2 \times 10^{-4}}{9 \times 10^{-3} \text{m}} \right) = -1 \times 10^5 \text{ V} \\
E_B &= \frac{KQ_1}{r_1^2} - \frac{KQ_2}{r_2^2} = \frac{K}{r_1^2} \left(\frac{|Q_1|}{r_1} - \frac{|Q_2|}{r_2} \right) = 9 \times 10^9 \frac{\text{Nm}^2}{c^2} \left[\frac{1 \times 10^{-4}}{(3 \times 10^{-3} \text{m})^2} - \frac{2 \times 10^{-4}}{(9 \times 10^{-3} \text{m})^2} \right] = 7.78 \times 10^6 \text{ N/C} \quad \text{(i.e. to the right)}
\end{align*}
\]

\[\text{E Lines: away from } Q_2 \quad \text{toward } Q_1 \quad \text{twice as many lines on } Q_1 \text{ as an end on } Q_2\]