Mode conversion in tokamak geometry

Eugene R. Tracy, Wm. \& Mary
http://www.physics.wm.edu/~tracy
Allan N. Kaufman, LBNL \& UC Berkeley

Goals

- Compute global response of a tokamak to magnetosonic driving, including ion-hybrid conversion.
- Find spatial absorption profile and cavity Q.

Basic physical model

- Cold D-T plasma ($\mathrm{n}_{\mathrm{D}}=\mathrm{n}_{\mathrm{T}}=\mathrm{n}_{\mathrm{e}} / 2$)
- $\mathbf{E}(x, z ; t)=e^{-i \omega t} \mathbf{E}(x, z)$
- $\mathbf{B}(x)=B_{0}\left(1-x / L_{B}\right) \hat{y}$
- $\frac{D}{\overline{\text { dis }}}(x, z$, tensor.
- Project onto 2 uncoupled polarizations:

$$
\hat{e}_{M} \equiv \frac{\hat{x}+i \hat{z}}{\sqrt{2}} ; \quad \hat{e}_{H} \equiv \hat{x}
$$

$$
\begin{gathered}
\mathbf{E}(x, z)=E_{M} \hat{e}_{M}+E_{H} \hat{e}_{H} \equiv \psi(x, z) \hat{e}_{M}+\phi(x, z) \hat{e}_{H} \\
\left(\begin{array}{cc}
\hat{D}_{H} & \eta \\
\eta^{*} & \hat{D}_{M}
\end{array}\right)\binom{\phi}{\psi}=0 \\
D_{M}=R-\frac{1}{2} N^{2}=\frac{\omega^{2}}{c_{A}^{2}}-k_{\perp}^{2} ; \quad D_{H}=x-x_{H}(\omega) \\
\eta=R / \sqrt{2} \quad \text { (omitting constant factors) }
\end{gathered}
$$

The tokamak as a resonant cavity

- Launch a family of rays from the antenna. Magnetosonic (MS) wave field injected is ψ_{0}.
- Calculate amplitude and phase transport using standard phase integral and van Vleck determinant
- At each resonance crossing use local modular approach to break the crossing into a two-step conversion process

$$
\Rightarrow
$$

- At each conversion use S-matrix connection formula:

$$
\binom{\phi^{(\text {out })}}{\psi^{(\text {out })}}=\left(\begin{array}{cc}
\tau & \beta \\
-\beta^{*} & \tau
\end{array}\right)\binom{\phi^{(\text {in })}}{\psi^{(\text {in })}}
$$

- At edge of plasma perform specular reflection of MS wave.
- Field escapes cavity via hybrid, ϕ, which eventually Landau damps on background.

Computing the cavity response: sum over all paths

- 'Simple escape': $\underline{\mathrm{A}} \underline{\mathrm{B}}$
- 'One loop': $\underline{A} A \quad \underline{A B} \quad \underline{B} A \quad \underline{B}$
- 'L loops': $(\underline{A}+\underline{B})(A+B)^{L}$
- Superpose all possible paths

$$
\phi=(\underline{A}+\underline{B}) \sum_{L=0}^{\infty}(A+B)^{L} \psi_{0} \equiv \hat{C}(\omega) \psi_{0}
$$

Numerical results

- Launch 1,000 rays focused on magnetic axis
- $\eta=1$, therefore weak transmission

$$
\tau=e^{-\pi \eta^{2}} \approx 4 \%
$$

- follow rays through 100 resonance crossings
- superpose disturbances at output of upper conversion

Summary and conclusions

- Modular treatment of ion-hybrid resonance has been extended to 2D poloidal plane of the tokamak
- semi-classical treatment of propagation gives insight into energy flow through system
- 1000 rays through 100 bounces takes about 1 min. on a desktop workstation (SGI O2)

