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Abstract. We consider the problem of computing the global response of a tokamak
to RF-antenna driving, including conversion at the ion-hybrid resonance layer. The
tokamak is modeled as a 2-D circular cavity (a poloidal cross-section). An antenna
launches a family of magnetosonic (MS) rays. The amplitude and phase of the MS
wave �eld are transported using eikonal techniques: the phase is transported using
the standard phase integral, while the amplitude is calculated using the van Vleck
formula which accounts for the convergence or divergence of neighboring rays. As each
ray of this family crosses the ion-hybrid (IH) resonance it is partially transmitted,
partially reected and partially converted into an IH wave which remains con�ned to
the resonance layer. This MS/IH conversion process is described by an S-matrix. The
S-matrix can be evaluated using previously developed techniques. The transmitted
and reected MS rays now propagate from the resonance layer. They are globally
con�ned and are reected at the edge of the plasma. Hence, they will re-enter the
resonance layer. At each resonance crossing new families of rays are created and some
fraction of the MS wave energy and action is converted into the IH wave, eventually
damping on the background plasma. The resulting �eld distribution in the cavity will
be a superposition of this multitude of ray families. Fine-scale structure is observed to
emerge due to caustic formation. We focus our attention on this iterated conversion
to the IH wave and ask how the energy leakage a�ects the overall cavity response and
the spatial distribution of energy absorbed as a function of frequency.

INTRODUCTION

In this short note we summarize the logic of a new calculational approach to the
study of RF heating in tokamaks. We provide only a qualitative summary of the
application to a very simpli�ed model. Details will be presented elsewhere.
We start with a cold DT plasma (nD = nT = ne=2) in tokamak geometry and

consider a poloidal cross section in the (x; z)-plane (see lower part of Fig. 1). All
�elds are assumed to have time variation e�i!t. The magnetic �eld strength is
assumed to vary as B(x) � B0(1� x

LB
). Projecting the 3�3 cold plasma dispersion
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tensor onto the uncoupled polarizations êM � x̂ + iŷ=
p
2; êH � x̂ we arrive at the

canonical 2� 2 form [1]  
DH �
� DM

!
(1)

with DH � x � xH(!), DM � !2

c2
A

� k2? and � a constant (we assume that kk = 0

and that B is purely toroidal). For the applications of present interest the coupling
constant � � O(1) giving weak transmission (� = e���

2 � 4%).
A family of MS rays is launched by an antenna (Fig. 1). The peregrinations of

this family and its descendants are followed as they propagate through the system.
We focus particular attention on the return maps as the families repeatedly cross
the resonance layer. The use of families of rays (lagrange manifolds) allows us to
calculate the amplitude and phase transported along the rays. Following single rays
is insu�cient in this regard [2]. The use of semi-classical techniques to calculate
cavity eigenmodes is a well-established area (see, e.g. [3,4] for overviews, [5] for an
exposition of `wave maps', and [7] for an example of `ray splitting').
The new aspect of the present study is the presence of the hybrid resonance. Even

without damping, this resonance leads to energy leakage from the cavity and results
in a �nite Q. Hence, we are not calculating eigenmodes { which do not exist { but
the cavity response. There is some formal similarity with the work of [6] concerning
the semi-classical analysis of semi-conductor nanostructures. In that case, however,
the cavity is physically open, while in the present case the magnetosonic rays are
spatially con�ned while the hybrid rays can escape by propagating in k-space.
The resonance crossing is analyzed as a two-step process using the modular

approach of Ye and Kaufman [8] (see caption Fig. 1). Referring now to Fig. 2:
the incoming rays from the antenna ( 0) enter the hybrid resonance at 1. The �eld
�H which exits the upper conversion at the position labeled 7 is the hybrid mode
excited by the antenna. The `cavity response' is the linear operator Ĉ de�ned as:
�H = Ĉ(!) 0.
In Fig. 3 we show the results of a typical numerical study. The initial family of

1000 rays was focused at the magnetic axis with a gaussian half-width consistent
with the antenna geometry of DIII-D (i.e. symmetric about the axis with maxi-
mum angular extension of �26� [10]). Because the transmission coe�cient is so
small (� � 4%), only ray paths which involve a single transmission are retained,
preventing exponential blow-up in the number of rays. The frequency is :525!H0

and k2? = 400m�2 [11]. One hundred crossings are used to construct the �eld. By
this stage, all but � 1% of the initial energy has leaked out of the cavity. The
entire calculation takes less than one minute on an SGI-O2 workstation.

REFERENCES

1. A. N. Kaufman, E. R. Tracy, J. J. Morehead & A. J. Brizard, Phys. Lett. 252A

(1999) 43.



2. R. G. Littlejohn, J. Stat. Phys. 68 (1992) 7.

3. S. W. McDonald & A. N. Kaufman, PRL 42 (1979) 1189.

4. E. J. Heller & S. Tomsovic, Physics Today 46 (July 1993) 38.

5. E. B. Bogomolny & M. Carioli, Physica 67 D (1993) 88.

6. J. B. Delos and C. D. Schwieters, in Classical, semi-classical and quantum dynamics

in atoms, Lecture Notes in Physics 485 (Springer, 1997); C. D. Schwieters, J. A.

Alford and J. B. Delos, Phys. Rev. 54 B (1996) 10 652.

7. R. N. Oerter, E. Ott, T. M. Antonsen & P. So, Phys. Lett. 216A (1996) 59.

8. H. Ye & A. N. Kaufman, PRL 60 (1988) 1642.

9. E. R. Tracy & A. N. Kaufman, PRE 48 (1993) 2196.
10. A. Jaun, T. Hellstein & S. C. Chiu, Nuclear Fusion 38 (1998) 153.

11. A. K. Ram, A. Bers & S. D. Schultz, Phys. Plasmas 3 (1996) 1976.

x

z

kz
kx

ψ0

φH

FIGURE 1. Phase space diagram of the resonance crossing. A group of rays forming the

incoming family  0 (a lagrange manifold) is launched by the antenna and crosses the hybrid

resonance at xH . This family is the lower set of bold black rays on the right. These are partially

transmitted to the high �eld side of xH and partially converted. The converted rays propagate

upward in k-space until they once again satisfy the MS dispersion relation, where they partially

convert again to form the reected MS rays. The remainder of these hybrid rays are transmitted

and contribute to the outgoing hybrid disturbance, �H . Meanwhile, the magnetosonic rays which

were transmitted at the �rst resonance have reected o� the inner boundary of the plasma and can

once again cross the resonance. Here they can be transmitted { and superpose with the reected

rays already present { or they can convert to the hybrid mode. The MS rays now leaving the

resonance region moving to the right reect at the plasma boundary and re-enter the resonance.

This process repeats itself ad in�nitum.
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FIGURE 2. Diagram of the possible paths a disturbance may take as it propagates from the

antenna input,  0, to the output hybrid channel, �H . The resulting steady state �eld set up by

the antenna is a linear superposition of all possible paths through this ow diagram.
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FIGURE 3. Poincare surfaces of section in the z�kz plane for rays crossing the hybrid resonance

at the upper crossing (I) and the lower crossing (II). The hybrid �eld excitation, �H (z), is shown

just above the upper crossing (labeled as position 7 in Fig. 2). Only 15 crossings were used

to illustrate the poincare surfaces of section, while 100 were used to generate the hybrid �eld.

The vertical scales are arbitrary and the poincare surfaces of section have been shifted for ease

of viewing. The dashed vertical lines are meant to guide the eye to the relationship between

�ne scale structure in the �eld and the corresponding caustics (folds of the lagrange manifolds).

(Notice that not all peaks in the �eld have an associated fold due to the fact that not all 100

lagrange manifolds have been shown, to avoid clutter.)


