PHYSICS 176: ASTRONOMY

2nd Midterm Exam, April 9, 1999

Name:

Lab section and TA:

Score:

As a member of William and Mary community, I pledge not to lie, cheat or steal, either in my academic or personal life. I understand that such acts violate the honor code and undermine the community of trust of which we are all stewards.

Signed:

You have fifty minutes to complete this exam. You may use a hand-held calculator and a single sheet of formulas. In the following, circle or underline the best answer. Mark your answer clearly. Ambiguous answers will be incorrect.

Possibly useful formulae or constants:

$\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} ; \lambda \mathrm{f}=\mathrm{c}$; (arc length) $\mathrm{s}=\mathrm{R} \theta$ (θ in radians);
$\mathrm{A}_{\text {circle }}=\pi \mathrm{R}^{2} ; \mathrm{V}_{\text {sphere }}=4 / 3 \pi \mathrm{R}^{3} ; 1$ radian $=57.3$ deg.; 1 deg. $=60^{\prime} ; 1^{\prime}=60^{\prime \prime} ; 1$ A.U. $=1.5 \times 10^{8} \mathrm{~km} ; 1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m}$; $1 \mu \mathrm{~m}=1 \times 10^{-6} \mathrm{~m} ; \mathrm{R}_{\text {Earth }}=6400 \mathrm{~km} ; \mathrm{R}_{\text {Sun }}=700,000 \mathrm{~km}$.

The radius of Venus is most similar to which of the following?
___ Mercury
___ Earth
___ Mars
___ Europa
In the 1950s, radio observations determined that Venus emitted a black-body spectrum characteristic of a temperature of:

```
__ 500 K
650 K
    750 K
___ 800 K
```

How much sunlight, on average, does each square meter of the surface of Venus receive compared to each square meter on Earth? Use the fact that the radius of Venus' orbit is .7 A.U.
__ 0.67

- 2.1
_ 0.44
-_ 3.5
How much sunlight, on average, does each square meter of the surface of Mars receive compared to each square meter on Earth? The radius of Mars' orbit is 1.5 A.U.
_- 0.67
-_ 2.1
_ 0.44
-_ 3.5
Which of the following provides evidence that water once flowed on Mars?
\qquad Valles Marineris
___ runoff and outflow channels
icecaps
\qquad canals

If Mars once had a significant atmosphere, what happened to it?
\qquad It escaped into space.

It was blown away by volcanic eruptions.
\qquad It dissolved into the liquid water which once flowed on the surface and became locked into the crust.
___ It froze into the polar icecaps.
A certain star, observed from Earth, has a parallax of 0.07 ". What would be its parallax as seen from Venus? The radius of Venus' orbit is .7 A.U.
__ 0.05 arc seconds
_ 0.67 arc seconds
_ 0.3 arc seconds
_ 0.1 arc seconds

What is the most likely cause of the Great Red Spot?
\qquad a large hurricane
\qquad a large comet impact feature a molten lava pool a volcano

Jupiter is the only planet which radiates more energy than it receives from the Sun. What is the most likely source of Jupiter's excess energy?
\qquad nuclear fusion
decay of radioactive elements cometary impact residual heat from its formation runaway greenhouse effect

What tears a body apart when it is within the Roche limit of a planet?
___ high orbital velocity
tidal forces
high rate of rotation
___ exposure to intense magnetic fields
What is the angular diameter of the Sun, as seen from Jupiter? The radius of Jupiter's orbit is 5 A.U.

- 0.1 degrees
_ 0.05 degrees
_ 0.016 degrees
_ 0.005 degrees
What is the round trip travel time for a light signal to go from the Sun to a comet in the Oort cloud and back (with orbital radius of about 1,000 A.U.)?
_ 12 hours
_ 2 days
10 days
1 month
What is the most likely source of short period comets?
__ The Kuiper Belt
The Oort cloud
_ Tidally induced eruptions on Europa
The sun capturing comets from outside the solar system

What is the most likely source of long period comets?
_ The Kuiper Belt
__ The Oort Cloud
__ Tidally induced eruptions on Europa
__ The sun capturing comets from outside the solar system

What causes a comet to form a coma and tail as it approaches the inner solar system?
__ the solar wind
gravitational interactions with Jupiter
tidal effects due to the Sun
heating from the Sun

A typical comet contains about $10^{13} \mathrm{~kg}$ of water ice. How many comets would have to strike the Earth in order to account for the roughly $2 \times 10^{21} \mathrm{~kg}$ of water presently found on our planet?
__ 2 million
__ 20 million
__ 200 million
__ 2 billion
What is the process that produces the Sun's energy?
___ burning of hydrogen and oxygen
___ heat left over from its formation
fusion of hydrogen into helium
___ fusion of helium into heavier elements

What direct product of fusion reactions occurring in the core of the Sun is detectable here on Earth?
__ Gamma rays
___ positrons
___ neutrinos
___ helium
The Sun is about? times bigger in diameter than the Earth.
__ 10
100
1,000
10,000
An object has a parallax of 1 degree. What is the parallax for a similar object at five times this distance?
__ $1 / 2$ degree
$1 / 4$ degree
$1 / 5$ degree
__ $1 / 25$ degree
What is the source of Io's volcanic activity?
radioactive decay of elements
impacts from meteorites
tidal heatingexcess heat emitted from Jupiter
Why does Europa have so few impact craters?
___ It has been shielded from impacts by Jupiter.
___ Tectonic activity in its icy crust has erased most craters.
__ Its surface is mostly liquid water.
___ The craters have been covered over by magma from volcanic eruptions.

What is the most fundamental property of a star? (I.e. that physical property which determines where it lies on the main sequence?)
\qquad temperature
mass
___ luminosity
___ radius

What is the main-sequence (hydrogen core burning)
lifetime for stars like the Sun?
__ 10 million years
10 billion years
100 million years
__ 100 billion years
Why is the depletion of hydrogen in the core of a star such an important event?
___ It means the star is about to die immediately.
The star is about to explode.
__ The star will begin to change its structure drastically.

The star will begin to produce less and less energy until it becomes a black dwarf.

What is the helium flash?
__ A flare that occurs on the surface of solar-type stars. The rapid fusion of helium in the electrondegenerate core of a red giant.

The explosion that creates a planetary nebula.
\qquad The flash of light given off when a star collapses into a white dwarf.

At what stage do the evolution of high- and low-mass stars diverge?
__ After the formation of a carbon core.
_ Immediately after leaving the main sequence.
While on the main sequence.
At the start of hydrogen-shell-burning.
What is a planetary nebula?
__ The disc of material around a young star that will eventually form a solar system.

The ejected envelope of a giant low-mass star.
The destroyed remains of a planetary system when a star becomes a red giant.

Globular clusters that looked like a cloud of gas to early astronomers.

A white dwarf with an accretion disk is in a binary system. Suddenly it flares, but in a few months settles back to normal. What is it?
-
planetary nebula
_ core-collapse supernova
nova
_ carbon-detonation supernova
The formation of $a(n)$ \qquad core ultimately leads a massive star to become a supernova.
carbon
__ iron
helium
silicon

The Crab Nebula is now about 1 LY in radius. If it was observed to explode in AD 1054, roughly how fast is it expanding? (Assume constant velocity.)
_ $900 \mathrm{~km} / \mathrm{s}$
_ $1000 \mathrm{~km} / \mathrm{s}$
__ $2000 \mathrm{~km} / \mathrm{s}$
__ $1500 \mathrm{~km} / \mathrm{s}$
What distinguishes a nova light curve from the light curves of supernovae?
___ peak brightness is much less
___ return to normal brightness takes only a few months _ the flare producing the nova may repeat many times
\qquad all of these

Why do the cores of massive stars evolve into iron, not heavier elements?
_ Fusion of heavier elements disrupts the stability of the core because is takes energy from its surroundings.
\qquad Iron is the heaviest element that can be formed by fusion.

The temperature never gets high enough to allow the fusion of heavier elements.
\qquad The star goes supernova before the core has a chance to make heavier elements.

A certain telescope can just barely detect the Sun at a distance of $10,000 \mathrm{LY}$. What is the maximum distance at which it could detect a supernova with a peak luminosity of 10^{10} solar luminosities?
\qquad $10^{7} \mathrm{LY}$

- 10
$10^{8} \mathrm{LY}$
$10^{9} \mathrm{LY}$
-_ $10^{10} \mathrm{LY}$
The H-R diagram for a particular star cluster shows a main sequence region and a turnoff point which is very sharply defined, i.e. the stars fall on a narrow line which branches away at a well-defined point rather than in a broad band. We can conclude, therefore, that:
___ The chemical compositions of the stars in the cluster are all very similar.
_ The stars in the cluster all have nearly the same temperature.
___ The stars in the cluster all have nearly the same age.
___ The cluster is too far to measure the distance to using trigonometric parallax.

