PHYSICS 176: ASTRONOMY	1
Special Final Exam, September 3, 1999	Jupiter is about ? times bigger in diameter than the Earth.
Name:	101,00010,000
Lab section and TA:	Approximately how many times more <i>massive</i> than the Earth is Jupiter?
Score:	1,00010,000300,0001 million
As a member of William and Mary community, I pledge not to lie, cheat or steal, either in my academic or personal life. I understand that such acts violate the honor code and undermine the community of trust of which we are all stewards. Signed: You have three hours to complete this exam. You may use a hand-held calculator and a single sheet of formulas. In the following, circle or underline the <i>best</i> answer. Mark your answer clearly. Ambiguous answers will be incorrect. Possibly useful formulae or constants: $c = 3x10^8 \text{ m/s}; \lambda f = c;$ (arc length) $s = R\theta$ (θ in radians); $A_{circle} = \pi R^2; V_{sphere} = 4/3 \pi R^3;$ 1 radian = $57.3 \text{ deg.};$ 1 deg. = $60'$; 1'= $60''$; 1 A.U.=1. $5x10^8 \text{ km};$ 1 nm = $1x10^{-9} \text{ m};$ 1 μ m = $1x10^{-6} \text{ m};$ $R_{Earth} = 6400 \text{ km};$ $R_{Sun} = 700,000 \text{ km};$	An object has a parallax of 1 degree. What is the parallax for a similar object at twenty-five times this distance?
A FREEBIE! NO RIGHT OR WRONG ANSWER! PONDER IT FOR A FEW MOMENTSOR A LIFETIME: What is your best guess regarding how common intelligent life is in the Universe? very common common, but not under every rockfairly rare, but not so scarce that we're 'alone'extremely rare, possibly we're unique HAVE A GREAT SUMMER!	

A 2-m telescope can collect a given amount of light in 1 hour. Under the same observation conditions, how much time would be required for a 4-m telescope to perform the same	A major discovery made by Shapley using RR Lyrae stars and globular clusters established
task?30 minutes2 hours15 minutes4 hours	That the spiral nebulae are actually galaxies outside the Milky Way.
What is the cause of tectonic plate motion? Earth's rotationconvection in the upper mantle	That the spiral arms are regions of star formationThe size of the galaxy and the Sun's position in itThat globular clusters lie outside the Milky Way at large distances.
tidal forces from the Moon	
earthquakes	Where is active star formation most often found in the
If you were standing on the <i>near</i> side of the Moon, which object(s) would <i>not</i> show phases?	Galaxy?halodiskgalactic bulgespiral arms
JupiterEarthVenusall of the above	According to Hubble's law, with $H_0 = 75 \text{ km/s/Mpc}$, what is the recessional velocity of a galaxy at a distance of 500 Mpc
Which of the following provides evidence that water once flowed on Mars?	3,750 km/s1,500 km/s 37,500 km/s15,000 km/s
runoff and outflow channels	777
Valles Marineris	What is the size of the largest observed structures in the
Olympus Mons icecaps	universe?50 Mpc80 Mpc200 Mpc1000 Mpc
icccups	
What is the source of Jupiter's excess energy?	What is Olber's paradox?
gravitational potential energy from its formation	Why is the sky dark at night?
tidal heating by Io	Why do we appear to be at the center of the expanding
decay of radioactive elements	universe?
greenhouse effect	Why is the Hubble law isotropic?
What is the sayman of Isla valencia activity?	Will the universe expand forever?
What is the source of Io's volcanic activity?radioactive decay of elements	What happened at the <i>decoupling</i> transition in the standard
impacts from meteorites	Big Bang model?
tidal heating by Jupiter	Strong, weak, and electromagnetic forces were no longer
excess heat emitted from Jupiter	one single force.
•	electrons and nuclei combined to form atoms forming
What is the process that produces the Sun's energy?	neutral hydrogen.
burning of hydrogen and oxygen	Neutrons and protons were formed by combining quarks.
heat left over from its formation	Dark matter and baryonic matter no longer interacted.
fusion of helium into heavier elements	
fusion of hydrogen into helium	Why is the possible discovery of water <i>ice</i> on the Moon important?
What is the main-sequence (hydrogen core burning) lifetime for stars like the Sun?	possible source of fresh water for Earthpossible that life would form there
10 million years10 billion years	possible use as a resource for human habitation of the
100 million years100 billion years	Moon.
	proves the solar system formed over 4 billion years ago.
The Crab Nebula is now about 1 pc in radius. If it was	
observed to explode in A.D. 1054, roughly how fast is it	Why is the possibility of <i>liquid</i> water on Europa important?
expanding? (Assume constant velocity.)	possible source of cheap fresh water for Earth
100 km/s1,000 km/s	possible that life would form there
5,000 km/s10,000 km/s	the hydrogen can easily be used as rocket fuelproves the solar system formed over 4 billion years ago.
A 20-km radius neutron star is spinning 200 times per	proves the solar system formed over 4 billion years ago.
second. Find the speed of a point on its equator, and	The star Betelgeuse has been measured by the Hubble
compare it with the speed of light. (Consider the equator as	Telescope to have a radius of about 7.5 X 10 ⁸ km. What is
the circumference of a circle, and recall that	this in A.U.? About how far out would this extend if
circumference= $2\pi r$.)	Betelgeuse were placed at the center of our solar system?
8 % speed of light0008 % speed of light	2.5 A.U., beyond Mars but not the asteroid belt
80 % speed of light008 % speed of light	2.5 A.U., beyond the Earth but not beyond Mars
	5 A.U., radius of Mars' orbit
	5 A.U. radius of Jupiter's orbit

Very roughly, how long would it take the expanding shell of	Hubble's law relates which two observed properties of a
a supernova to cross the Milky Way? To reach the	galaxy?
Andromeda Galaxy? (Assume the shell expands at a constant	recessional velocity and luminosity
velocity of .1 c.)	distance and recessional velocity
100,000 years for the Milky Way; 1 million years for	peak luminosity and distance
Andromeda	rotation rate and luminosity
1 million years for the Milky Way; 20 million years for	
Andromeda	What is the approximate distance to Andromeda?
	**
1 million years for the Milky Way; 20 million years for	100 kpc10 kpc1 Mpc10 Mpc
Andromeda	
10 million years for the Milky Way; 100 million years for	Which of the following is the accepted interpretation of
Andromeda	Hubble's law?
	As galaxies move outward, they are replaced with new
A certain telescope can just detect the Sun at a distance of	matter created to take its place.
1,000 pc. What is the maximum distance at which it could	The farther away a galaxy is from us, the faster it is
detect a supernova with a peak luminosity 10 ¹² times that of	moving away, because of the Big Bang, much like an
the Sun?	
$10^{7} \text{ pc} 10^{8} \text{ pc} 10^{9} \text{ pc} 10^{10} \text{ pc}$	ordinary explosion.
10 pc10 pc10 pc	Galaxies are pulled apart as the intervening space
	expands over time.
Astronomers have observed what they believe to be neutron	Galaxies are stationary but over time they evolve and
stars by what means?	redden, giving the appearance of motion.
gravitational lensing due to their strong gravity fields	
`lighthouse' effect due to its rapid rotation	What is the `mainstream' explanation for the high redshifts
gravitational redshift of hydrogen spectral lines	observed in distant objects?
neutrino detectors in mineshafts.	They are rapidly moving away from us through the
neutino detectors in innestiarts.	
	background space.
The original shape of the cloud of gas that first formed the	They are at rest with respect to us, but the light has been
Milky Way Galaxy might still be seen in the shape of the	gravitationally redshifted.
?	Their light has lost energy over time while traveling this
diskhalogalactic bulgespiral arms	distance.
	In the time it took their light to reach us, the Universe
The thickness of the Milky Way's disk in the vicinity of the	expanded and, thus, their wavelengths have increased.
Sun:	
30 pc300 pc3,000 pc30,000 pc	What is the origin of the cosmic microwave background?
50 pc500 pc5,000 pc	
Will 1 Cd 4 1 A M.	light remaining from the Big Bang
What evidence suggests that much of the matter in the Milky	the combined radiation of all objects too distant to see
Way is `dark'?	individually
large regions in the galaxy where no stars are seen	billions and billions of stars in the universe
faint radio emission suggesting large regions of cool	the total of all the synchrotron sources.
matter which would not emit visible light	
the rotation velocity vs. radius of stars as they orbit the	What type of spectrum is the cosmic microwave
center of the Milky Way	background?
detection of gravity waves.	black-bodyemission line
detection of gravity waves.	absorption linesynchrotron
TTT	aosorption finesynchronon
The motion of stars and gas clouds in the vicinity of the	
center of the Milky Way suggests that it houses a	In the early Universe, when most of the energy was tied up in
wormhole	photons, what physical processes would have been common?
very large star cluster of white dwarf stars	pair creation and annihilation
very massive cloud of gas which is to cool to emit visible	nuclear fission of heavy elements
light	supernovae
supermassive black hole	proton decay.
supermassive order note	proton decay.
A cartain talascona can saa a star like the Sun et a distance of	In the standard Rig Rang model, once deutorium forms it is
A certain telescope can see a star like the Sun at a distance of	In the standard Big Bang model, once deuterium forms it is
10,000 pc. The brightest Cepheids are 10,000 times the	quickly converted into
luminosity of the Sun. How far away can this telescope see	heliumcarbonironoxygen
these Cepheids?	
$10^9 \mathrm{pc} 10^6 \mathrm{pc} 10^8 \mathrm{pc} 10^7 \mathrm{pc}$	At 15 minutes after the Big Bang (and after helium finished
	forming), what heavy element(s) formed?
	nitrogenoxygen
	carbonno other heavy elements formed

What is the most common type of galaxy?	
elliptical	
barred spiral	
irregular	
spherical	
What future stages is our Sun likely to pass through as it dies?	
supernova	
carbon detonation	
red giant to white dwarf	
collapse to neutron star	
What is plotted vs. what on an H-R diagram?	
temperature vs. size	
temperature vs. color	
temperature vs. absolute brightness	
absolute brightness vs. size	
What two properties of a Cepheid variable are related to one another in such a way that we can estimate the distance to them? size is proportional to absolute brightness period is proportional to absolute brightness period is proportional to temperature size is inversely proportional to temperature	
Very roughly: what is our best estimate for the age of the Earth?	
10 billion years	
4 billion years	
1 billion years	
100 million years	
What causes sunspots?carbon build-up in photospheremagnetic fieldscondensationall of these	