PHYSICS 176: ASTRONOMY

Special Final Exam, September 3, 1999

Name:

Lab section and TA:

Score:

As a member of William and Mary community, I pledge not to lie, cheat or steal, either in my academic or personal life. I understand that such acts violate the honor code and undermine the community of trust of which we are all stewards.

Signed:

You have three hours to complete this exam. You may use a hand-held calculator and a single sheet of formulas. In the following, circle or underline the best answer. Mark your answer clearly. Ambiguous answers will be incorrect.

Possibly useful formulae or constants:

$\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} ; \lambda \mathrm{f}=\mathrm{c}$;
(arc length) $\mathrm{s}=\mathrm{R} \theta$ (θ in radians);
$A_{\text {circle }}=\pi R^{2} ; V_{\text {sphere }}=4 / 3 \pi R^{3}$;
1 radian = 57.3 deg.;
1 deg. $=60^{\prime} ; 1^{\prime}=60^{\prime \prime}$;
1 A.U. $=1.5 \times 10^{8} \mathrm{~km}$;
$1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m} ; 1 \mu \mathrm{~m}=1 \times 10^{-6} \mathrm{~m}$;
$\mathrm{R}_{\text {Earth }}=6400 \mathrm{~km} ; \mathrm{R}_{\text {Sun }}=700,000 \mathrm{~km}$;
$1 \mathrm{pc}=3.3 \mathrm{LY}=3 \mathrm{X} 10^{13} \mathrm{~km}=2 \mathrm{X} 10^{5} \mathrm{~A} . \mathrm{U}$.

A FREEBIE! NO RIGHT OR WRONG ANSWER! PONDER IT FOR A FEW MOMENTS...OR A LIFETIME:

What is your best guess regarding how common intelligent life is in the Universe?
\qquad very common
_ common, but not under every rock
___fairly rare, but not so scarce that we're 'alone'
___extremely rare, possibly we're unique

HAVE A GREAT SUMMER!

Jupiter is about? times bigger in diameter than the Earth.
__ 10 __ 100 __ 1,000 __ 10,000

Approximately how many times more massive than the Earth is Jupiter?
\qquad
An object has a parallax of 1 degree. What is the parallax for a similar object at twenty-five times this distance?
__ $1 / 2 \mathrm{deg}$. ___ $1 / 5 \mathrm{deg}$. __ 25 deg . __ $1 / 25 \mathrm{deg}$.
In a few seconds, light leaving Los Angeles will reach approximately as far as (choose the closest)
__San Francisco (about 500 km).
—_London (roughly $10,000 \mathrm{~km}$).
__the Moon ($400,000 \mathrm{~km}$).
__the $\operatorname{Sun}(150,000,000 \mathrm{~km})$.
In about a day light leaving Los Angeles will reach approximately as far as (choose the closest match)
\qquad
___the Kuiper belt ___the Oort cloud.
Given that the distance to the Moon is $4 \mathrm{X} 10^{5} \mathrm{~km}$ and its angular size is $1 / 2$ degree, calculate the Moon's diameter.
__ $5,000 \mathrm{~km}$ __ $3,500 \mathrm{~km}$ __ $2,000 \mathrm{~km}$ __ $1,000 \mathrm{~km}$

At $3 \mathrm{~cm} / \mathrm{yr}$, how long would it take a typical plate to traverse the present width of the Pacific Ocean, about $10,000 \mathrm{~km}$?
_ 250 million years 200 million years _ 330 million years
500 million years

The elapsed time between passage of two crests of a wave is its:

$$
\begin{aligned}
& \text { __wavelength } \\
& \text { __frequency } \\
& \text { __priod }
\end{aligned}
$$

For which of the following forms of electromagnetic radiation is the Earth's atmosphere completely transparent?
\qquad x-rays \qquad visible light
__ultraviolet \qquad all of these

How does the apparent brightness of light emitted by a supernova change with distance?
_ It does not change.
___It is proportional to the distance.
___It is inversely proportional to the distance.
__It is inversely proportional to the square of the distance.
What is the wavelength of a 30 MHz radio signal?
\qquad 100 m \qquad 10 m \qquad 1 m \qquad 10 cm

What is the frequency of a 30 nm photon?
$\quad _2 \times 10^{15} \mathrm{~Hz} \quad _1 \times 10^{14} \mathrm{~Hz}$
$\begin{array}{r}2 \\ \hline\end{array} \times 10^{16} \mathrm{~Hz} \quad \square^{-} 2 \times 10^{14} \mathrm{~Hz}$

A 2-m telescope can collect a given amount of light in 1 hour. Under the same observation conditions, how much time would be required for a $4-\mathrm{m}$ telescope to perform the same task?
__ 30 minutes ___ 2 hours ___ 15 minutes __ 4 hours
What is the cause of tectonic plate motion?
___Earth's rotation
___convection in the upper mantle
__tidal forces from the Moon
__earthquakes
If you were standing on the near side of the Moon, which object(s) would not show phases?
__Jupiter ___Earth __Venus ___all of the above
Which of the following provides evidence that water once flowed on Mars?
___runoff and outflow channels
__Valles Marineris
___Olympus Mons
___icecaps
What is the source of Jupiter's excess energy?
__gravitational potential energy from its formation
___tidal heating by Io
___decay of radioactive elements
greenhouse effect
What is the source of Io's volcanic activity?
___radioactive decay of elements
__impacts from meteorites
_tidal heating by Jupiter
___excess heat emitted from Jupiter
What is the process that produces the Sun's energy?
___burning of hydrogen and oxygen
___heat left over from its formation
-_fusion of helium into heavier elements
__fusion of hydrogen into helium
What is the main-sequence (hydrogen core burning) lifetime for stars like the Sun?
_ 10 million years 100 million years __ 10 billion years
_ 100 billion years
\qquad
The Crab Nebula is now about 1 pc in radius. If it was observed to explode in A.D. 1054, roughly how fast is it expanding? (Assume constant velocity.)
__ $100 \mathrm{~km} / \mathrm{s}$ __ $1,000 \mathrm{~km} / \mathrm{s}$
_ $5,000 \mathrm{~km} / \mathrm{s}$ __ $10,000 \mathrm{~km} / \mathrm{s}$
A $20-\mathrm{km}$ radius neutron star is spinning 200 times per second. Find the speed of a point on its equator, and compare it with the speed of light. (Consider the equator as the circumference of a circle, and recall that circumference $=2 \pi$ r.)

[^0]A major discovery made by Shapley using RR Lyrae stars and globular clusters established
__That the spiral nebulae are actually galaxies outside the Milky Way.
_That the spiral arms are regions of star formation.
__The size of the galaxy and the Sun's position in it.
_That globular clusters lie outside the Milky Way at large
distances.
Where is active star formation most often found in the Galaxy?
__halo ___disk __galactic bulge __spiral arms
According to Hubble's law, with $\mathrm{H}_{0}=75 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$, what is the recessional velocity of a galaxy at a distance of 500 Mpc ?

What is the size of the largest observed structures in the universe?
___ 50 Mpc ___ 80 Mpc ___ 200 Mpc ___ 1000 Mpc
What is Olber's paradox?
___ Why is the sky dark at night?
Why do we appear to be at the center of the expanding universe?
___ Why is the Hubble law isotropic?
__Will the universe expand forever?
What happened at the decoupling transition in the standard Big Bang model?
_Strong, weak, and electromagnetic forces were no longer
one single force.
__electrons and nuclei combined to form atoms forming neutral hydrogen.
___Neutrons and protons were formed by combining quarks.
__Dark matter and baryonic matter no longer interacted.
Why is the possible discovery of water ice on the Moon important?
___possible source of fresh water for Earth
__possible that life would form there
__possible use as a resource for human habitation of the Moon.
__proves the solar system formed over 4 billion years ago.
Why is the possibility of liquid water on Europa important?
___possible source of cheap fresh water for Earth
___possible that life would form there
__ the hydrogen can easily be used as rocket fuel
__proves the solar system formed over 4 billion years ago.
The star Betelgeuse has been measured by the Hubble Telescope to have a radius of about $7.5 \times 10^{8} \mathrm{~km}$. What is this in A.U.? About how far out would this extend if Betelgeuse were placed at the center of our solar system?
__2.5 A.U., beyond Mars but not the asteroid belt
___2.5 A.U., beyond the Earth but not beyond Mars
__ 5 A.U., radius of Mars' orbit
___ 5 A.U. radius of Jupiter's orbit

Very roughly, how long would it take the expanding shell of a supernova to cross the Milky Way? To reach the
Andromeda Galaxy? (Assume the shell expands at a constant velocity of .1 c .)
___100,000 years for the Milky Way; 1 million years for Andromeda
1 million years for the Milky Way; 20 million years for Andromeda
___1 million years for the Milky Way; 20 million years for Andromeda
___ 10 million years for the Milky Way; 100 million years for Andromeda

A certain telescope can just detect the Sun at a distance of $1,000 \mathrm{pc}$. What is the maximum distance at which it could detect a supernova with a peak luminosity 10^{12} times that of the Sun?

Astronomers have observed what they believe to be neutron stars by what means?
___gravitational lensing due to their strong gravity fields
_- 'lighthouse' effect due to its rapid rotation
-_gravitational redshift of hydrogen spectral lines
___neutrino detectors in mineshafts.
The original shape of the cloud of gas that first formed the Milky Way Galaxy might still be seen in the shape of the _?
\qquad disk \qquad halo \qquad galactic bulge \qquad spiral arms

The thickness of the Milky Way's disk in the vicinity of the Sun:
__ 30 pc __ 300 pc __ $3,000 \mathrm{pc}$ __ $30,000 \mathrm{pc}$
What evidence suggests that much of the matter in the Milky Way is `dark'?
___ large regions in the galaxy where no stars are seen
__faint radio emission suggesting large regions of cool matter which would not emit visible light ___the rotation velocity vs. radius of stars as they orbit the center of the Milky Way
___detection of gravity waves.
The motion of stars and gas clouds in the vicinity of the center of the Milky Way suggests that it houses a \qquad -. __wormhole
_ very large star cluster of white dwarf stars
___very massive cloud of gas which is to cool to emit visible light
__supermassive black hole
A certain telescope can see a star like the Sun at a distance of $10,000 \mathrm{pc}$. The brightest Cepheids are 10,000 times the luminosity of the Sun. How far away can this telescope see these Cepheids?
\qquad

Hubble's law relates which two observed properties of a galaxy?
__recessional velocity and luminosity
distance and recessional velocity
___peak luminosity and distance
__rotation rate and luminosity
What is the approximate distance to Andromeda? $\ldots _100 \mathrm{kpc}$ ___ 10 kpc __ 1 Mpc __ 10 Mpc

Which of the following is the accepted interpretation of Hubble's law?
_As galaxies move outward, they are replaced with new matter created to take its place.
__The farther away a galaxy is from us, the faster it is moving away, because of the Big Bang, much like an ordinary explosion.
__Galaxies are pulled apart as the intervening space expands over time.

Galaxies are stationary but over time they evolve and redden, giving the appearance of motion.

What is the `mainstream’ explanation for the high redshifts observed in distant objects?

They are rapidly moving away from us through the background space.
___They are at rest with respect to us, but the light has been gravitationally redshifted.

Their light has lost energy over time while traveling this distance.
__In the time it took their light to reach us, the Universe expanded and, thus, their wavelengths have increased.

What is the origin of the cosmic microwave background? ___light remaining from the Big Bang
the combined radiation of all objects too distant to see individually
__billions and billions of stars in the universe
__the total of all the synchrotron sources.
What type of spectrum is the cosmic microwave

background?

__black-body __emission line
__absorption line ___synchrotron
In the early Universe, when most of the energy was tied up in photons, what physical processes would have been common?
___pair creation and annihilation
___nuclear fission of heavy elements
__supernovae
__proton decay.
In the standard Big Bang model, once deuterium forms it is quickly converted into
__ helium __carbon ___iron __oxygen
At 15 minutes after the Big Bang (and after helium finished forming), what heavy element(s) formed?
___nitrogen __oxygen
__carbon ___no other heavy elements formed

What is the most common type of galaxy?
_elliptical
_ barred spiral
irregular
___spherical
What future stages is our Sun likely to pass through as it dies?
___supernova
___carbon detonation
__red giant to white dwarf
_collapse to neutron star
What is plotted vs. what on an H-R diagram?
___temperature vs. size
_temperature vs. color
__temperature vs. absolute brightness absolute brightness vs. size

What two properties of a Cepheid variable are related to one another in such a way that we can estimate the distance to them?
\qquad ize is proportional to absolute brightness
period is proportional to absolute brightness
period is proportional to temperature
_size is inversely proportional to temperature
Very roughly: what is our best estimate for the age of the Earth?
_10 billion years
_ 4 billion years
_ 1 billion years
100 million years

What causes sunspots?
___carbon build-up in photosphere
\qquad magnetic fields
condensation
\qquad all of these

[^0]: __ 8% speed of light \qquad $.0008 \%$ speed of light _ 80% speed of light \qquad $.008 \%$ speed of light

