PHYSICS 176: ASTRONOMY

1st Midterm Exam, February 26, 1999

Name:

Lab section and TA:

Score:

As a member of the Wm. & Mary community, I pledge not to lie, cheat or steal, either in my academic or personal life. I understand that such acts violate the honor code and undermine the community of trust of which we are all stewards.

Signed:

You have fifty minutes to complete this exam. You may use a hand-held calculator and a single sheet of formulas.

In the following questions, indicate the correct answer. Mark your answer clearly. Ambiguous answers will be incorrect

Possibly useful formulae or constants:

c = $3X10^8$ m/s = 1 A.U./8 mins. = 1 LY/Y; $\lambda f = c$; (arc length) s = R θ (with θ in radians); Area of circle = πR^2 ; Surface area of a sphere = $4\pi R^2$; Volume of sphere = (4/3) πR^3 ; 1 radian = 57.3 deg.; 1 deg. = 60'; 1' = 60''; 1 A.U.=1.5 X 10⁸ km; 1 nm =1 X 10⁻⁹ m 1 $\mu m = 1 X 10^{-6} m$ What does an astronomer include in 'the Universe'?

- ____ space and time
- ____ matter (including living things)
- ____ energy of all forms
- ____ all of these

In one *hour*, radio waves leaving Los Angeles could reach approximately as far as (choose the *closest*)

- _____ the Moon (400,000 km).
- ____ Mars (1.4 A.U.)
- ____ Saturn (10 A.U.)
- ____ the nearest star (other than the sun!)

Through how many degrees, arc minutes, or arc seconds does the Moon move in one *day* relative to the background of stars?

- ____ 12 deg.
- ____ ½ deg.
- ___1'
- ____1"

By how many minutes do the solar and sidereal day differ?

- ____ 1 minute
- ____ 2 minutes
- ____ 4 minutes
- ____ 15 minutes

In what way did Newton improve Kepler's laws?

_____He determined the astronomical unit.

____ He found that planetary orbits were not always an ellipse.

____ He discovered the variation in orbital speed.

_____ He discovered the dependence on mass in Kepler's Third Law.

The distance between neighboring wave crests is the ? of a wave?

- ____ wavelength
- ____ frequency
- ____ amplitude
- ____ period

What is the physical difference between the various colors that make up the visible spectrum?

- ____ the speed of the waves
- ____ the amplitude of the waves
- ____ the wavelength
- ____the temperature of the wave

Which of the following is not an electromagnetic wave?

- ____ ultrasound
- ____ infrared
- ____ gamma rays
- ____ these are all electromagnetic waves

How does apparent brightness of light emitted by a star change with distance?

____ it does not change.

- _____ it is proportional to the distance.
- _____ it is inversely proportional to the distance.

_____ it is inversely proportional to the square of the distance.

Which of the following forms of radiation have the highest energy?

____ ultraviolet

- ____ gamma rays
- ____ infrared
- ____ X-rays

What is the wavelength of a 10^{15} Hz laser beam?

 $_$ 3 X 10⁻⁵ m

 $3 \times 10^{-6} \text{ m}$

 $\frac{1}{3} \times 10^{-7} \text{ m}$ $\frac{3}{3} \times 10^{-8} \text{ m}$

Why are astronomers building bigger telescopes?

____ to gather more light to see fainter objects

_____ to improve the resolution of their detectors

____ to see object farther away, hence farther in the past

____ all of these reasons

How many radio telescopes are found in an interferometer?

____ None. This is an optical telescope technique. ____ One. This method is similar to adaptive optics,

but for radio telescopes.

_ Two. They are used for making parallax measurements.

Two or more. They are used to synthesize the resolution of a larger telescope.

What advantage is there in viewing objects at wavelengths other than optical?

____ Some objects emit little or no optical radiation. other wavelengths give different information about

the physical conditions of the objects.

____ Resolution can be significantly better at wavelengths other than optical.

____ All of the above.

A 1-m telescope can collect a given amount of light in 1 hour. Under the same observing conditions, how much time would be required for a 4-m telescope to perform the same task?}

____ 4 minutes

- ____15 minutes
- ____ 20 minutes
- ____ 30 minutes

What would be the equivalent single-antenna diameter of a radio telescope constructed from 9 separate 100-m diameter antennae?

- 400 m diameter antenna
- 300 m diameter antenna
- ____ 200 m diameter antenna
- ____ 150 m diameter antenna

The mass of the earth can be estimated by:

____ measuring the average density of rocks and material near the surface, then multiplying by the volume of the Earth

measuring the distance to the Moon and the period of its orbit (1 month)

measuring the distance to the Sun and knowing the period of the Earth's orbit (1 year)

___ comparing the weights of different objects of known materials

Which of these objects does not rise in the east and set in the west?

Sun

planets

____ stars

none of these

Why are different stars seen at different times of the year?

_ the tilt of the Earth's axis changes significantly during the year.

____ the orbit of the Earth around the sun causes different parts of the sky to be visible at night.

The Sun moves around the Earth and blocks

various stars throughout the year.

All of these

Given that the distance to the Moon is 384.000 km and its angular size is 0.5 degrees, calculate the Moon's diameter.

- ____ 1680 km
- ____ 10,500 km
- ____ 3350 km
- ____ 192,000 km

What was still a major flaw in the Copernican model? Although the planets moved around the Sun, the Sun moved around the Earth.

Epicycles were still needed to explain retrograde motion.

All the paths of the planets were still circles.

_ Stars were considered local objects within the solar system.

Approximately how long does an Earth-Venus radar signal take to complete its round trip when Earth and Venus are at their closest to one another (0.3 A.U.)?

- ____ 30 seconds
- ____ 5 minutes
- ____ 1 hour
- ____ 1 day

For a wave of constant velocity, like electromagnetic waves, how are the wavelength and frequency related?

Wavelength is inversely proportional to the frequency.

____ Wavelength is proportional to the frequency.

Wavelength is proportional to the inverse square of the frequency.

____ Wavelength is proportional to the frequency squared.

For which of the following forms of electromagnetic radiation is the Earth's atmosphere completely opaque?

- ____ X-rays
- ____ visible light
- ____ infrared
- ____ radio

What is the wavelength of a 200 MHz radio signal?

- ____ 150 m
- ____ 15 m
- ____ 1.5 m
- ____ 15 cm

What is the primary advantage the Hubble Space Telescope has over ground-based telescopes?

____ all regions of the sky are dark in outer space.

_____ there is no blurring due to the atmosphere.

____ being weightless in space, it can utilize the largest mirror ever built.

it has a better view of celestial objects because it is closer to them.

Which of the following methods presently have the best spatial resolution for astronomical observing? ____ optical telescopes deployed from space or with

adaptive optics

- ____ radio interferometers
- ____ X-ray imaging

____ gamma-ray telescopes

Earth's average density is:

____ about equal to the density of water

_____ significantly greater than the density of surface rocks but less than that of lead

____ about equal to the density of lead

____ approximately the density of surface rocks

What is the primary cause of the tides?

the Earth's rotation makes the oceans 'squash a bit' nearer to the equator

the Moon's orbital motion exerts a drag on the Earth

____ global wind patterns

____ the gravitational influence of the Sun and Moon

Why are there no tides on land?

____ Because the Moon and Sun only exert a pull on the oceans.

there are, but they are significantly smaller than those in the oceans are.

The Earth's crust is too stiff to respond to weak tidal forces.

If the Earth were displaced from its present orbit onto another orbit with twice the diameter (2 A.U) how long would the new 'year' be?

- ____ 1.4 years
- ____2 years
- ___ ½ year
- 2.8 years

What would happen to Earth if the Sun's gravity were suddenly ``turned off"?

- ____ Nothing; it would continue to orbit the Sun.
- ____ It would move off in a straight line.
- ____ It would fall into the Sun.
- ____ It would slowly spiral away from the Sun.

What is the frequency of a 600 nm red photon?

- $2 \times 10^{15} \text{ Hz}$
- $__{5 x 10^{14} Hz}$
- $\frac{5 \times 10^{15} \text{ Hz}}{2 \times 10^{14} \text{ Hz}}$

A certain telescope can achieve (diffraction-limited) angular resolution of 0.1" for red light (of wavelength 700 nm). What would its resolution be (a) in the infrared at 1.4 μ m; and (b) in the ultraviolet at 100 nm?}

- ____ 0.01 and 0.25 arc seconds
- ____ 0.1 and .01 arc seconds
- 0.2 and 0.05 arc seconds
- 0.2 and 0.014 arc seconds

The Hubble telescope has a resolution of approximately 0.05" in the visible. How far apart must two objects be on the Moon (at a distance of 380,000 km) for them to be resolvable? (choose the closest match)

____ 4 cm ____ 4 m 40 m

4 km