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Quantum Monte Carlo Methods for
Strongly Correlated Electron Systems

Shiwei Zhang

ABSTRACT We review some of the recent development in quantum Monte
Carlo (QMC) methods for models of strongly correlated electron systems.
QMC is a promising general theoretical tool to study many-body systems,
and has been widely applied in areas spanning condensed-matter, high-
energy, and nuclear physics. Recent progress has included two new meth-
ods, the ground-state and finite-temperature constrained path Monte Carlo
methods. These methods significantly improve the capability of numerical
approaches to lattice models of correlated electron systems. They allow
calculations without any decay of the sign, making possible calculations
for large system sizes and low temperatures. The methods are approxi-
mate. Benchmark calculations show that accurate results on energy and
correlation functions can be obtained. This chapter gives a pedagogical in-
troduction to quantum Monte Carlo, with a focus on the constrained path
Monte Carlo methods.

1 Introduction

In order to understand properties of correlated electron systems and their
theoretical and technological implications, accurate calculations are neces-
sary to correctly treat microscopic correlations. This crucial need is man-
ifested in the daily demand to solve model systems, which are often in-
tractable analytically, in order to develop and benchmark theory and com-
pare with experiments.

To effectively calculate electron correlation effects is an extremely chal-
lenging task. It requires the solution of the Schrödinger equation or eval-
uation of the density matrix for a many-body system at equilibrium. Ex-
plicit numerical approaches are an obvious possibility, which have found
wide applications and proved very valuable, e.g., exact diagonalization in
the study of lattice models for high-temperature superconductivity and for
magnetism, and configuration interaction in quantum chemistry. However,
since the dimensionality involved grows exponentially with system size,
they all suffer from exponential complexity, i.e., exponential scaling of the
required computer time with system size or accuracy. As an example, with
the most powerful computers we now can treat a lattice of about 50 sites
in exact diagonalization of the two-dimensional spin-1/2 Heisenberg model,
up from ∼ 20 sites twenty years ago. During this period, the peak speed of
computers has been doubling roughly every two years.
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Monte Carlo methods offer a promising alternative as a numerical ap-
proach to study many-body systems. Its required computer time scales
algebraically (as opposed to exponentially in exact diagonalization) with
system size. Rather than explicitly integrating over phase space, Monte
Carlo methods sample it. The central limit theorem dictates that the statis-
tical error in a Monte Carlo calculation decays algebraically with computer
time. With the rapid advent of scalable parallel computers, these methods
offer the possibility to study large system sizes systematically and extract
information about the thermodynamic limit.

For fermion systems, however, Monte Carlo methods suffer from the so-
called “sign” problem[1, 2, 3]. In these systems, the Pauli exclusion principle
requires that the states be anti-symmetric under interchange of two par-
ticles. As a consequence, negative signs appear, which cause cancellations
among contributions of the Monte Carlo samples of phase space. In fact, as
the temperature is lowered or the system size is increased, such cancellation
becomes more and more complete. The net signal thus decays exponentially .
The algebraic scaling is then lost, and the method breaks down. Clearly
the impact of this problem on the study of correlated electron systems is
extremely severe.

To date most applications of QMC methods to strongly correlated elec-
tron models have either lived with the sign problem or relied on some form
of approximation to overcome the exponential scaling. The former has diffi-
culties reaching large system sizes or low temperatures. The latter loses the
exactness of QMC and the results are biased by the approximation. Despite
these limitations, QMC methods have proved a very useful theoretical tool
in the study of strongly correlated electron systems. In many cases they
have provided very accurate and reliable numerical results which are some-
times the only ones available for the system in question. Especially recently,
progress has been rapid in the development of approximate QMC meth-
ods for lattice models, which has led to a growing number of applications.
For example, with the constrained path Monte Carlo method (CPMC) dis-
cussed below, a system of 220 electrons on a 16×16 lattice in the Hubbard
model can be studied with moderate computer time[4]. The dimension of
the Hilbert space for this system exceeds 10150.1

In this chapter, we review some of the recent progress in the study of
models for strongly correlated electron systems with quantum Monte Carlo
methods. The chapter is not meant to be a comprehensive review. Our fo-
cus is on the ground-state and finite-temperature constrained path Monte
Carlo methods[5, 3, 6, 7]. We will, however, include in the Appendix some
discussions of variational Monte Carlo and Green’s function Monte Carlo
(GFMC)[8] methods, which have also seen extensive applications in the

1The size for a 16× 16 system with 109 electrons with up spins and 109 with
down spins is about 10149.
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study of correlated electron models. We do so to illustrate that, while
GFMC is very different from the auxiliary-field-based methods we focus
on, the underlying ideas and the nature of the sign problems have much
in common. Our goal is to highlight these ideas and show the capabilities
that QMC methods in general bring as a theoretical tool, as well as the
current algorithmic difficulties.

2 Preliminaries

2.1 Starting point of quantum Monte Carlo (QMC)

Most ground-state QMC methods are based on

|Ψ0〉 ∝ lim
τ→∞

e−τĤ |ΨT 〉; (1.1)

that is, the ground state |Ψ0〉 of a many-body Hamiltonian Ĥ can be pro-
jected from any known trial state |ΨT 〉 that satisfies 〈ΨT |Ψ0〉 6= 0. In a
numerical method, the limit can be obtained iteratively by

|Ψ(n+1)〉 = e−∆τĤ |Ψ(n)〉, (1.2)

where |Ψ(0)〉 = |ΨT 〉. Ground-state expectation 〈Ô〉 of a physical observable
Ô is given by

〈Ô〉 = lim
n→∞

〈ψ(n)|Ô|ψ(n)〉
〈ψ(n)|ψ(n)〉 . (1.3)

For example, the ground-state energy can be obtained by letting Ô = Ĥ.
A so-called mixed estimator exists, however, which is exact for the energy
(or any other Ô that commutes with Ĥ) and can lead to considerable
simplifications in practice:

E0 = lim
n→∞

〈ψT |Ĥ|ψ(n)〉
〈ψT |ψ(n)〉 . (1.4)

Finite-temperature QMC methods use the density matrix. The expecta-
tion value of Ô is:

〈Ô〉 =
Tr(Ôe−βĤ)

Tr(e−βĤ)
, (1.5)

where β = 1/kT is the inverse temperature. In other words, 〈Ô〉 is simply a

weighted average with respect to the density matrix e−βĤ . In a numerical
method, the partition function in the denominator of Eq. (1.5) is written
as

Z ≡ Tr(e−βĤ) = Tr[e−∆τĤ · · · e−∆τĤe−∆τĤ
︸ ︷︷ ︸

L

], (1.6)
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where ∆τ = β/L is the “time” step, and L is the number of time slices.
Quantum Monte Carlo methods carry out the iteration in Eq. (1.2) or

the trace in Eq. (1.6) — both requiring integration in many-dimensional
spaces — by Monte Carlo sampling. The difference in the different classes of
methods amounts primarily to the space that is used to represent the wave
function or density matrix and to carry out the integration. The ground-
state and finite-temperature constrained path Monte Carlo methods work
in second quantized representation and in an auxiliary-field space, while
Green’s function Monte Carlo works in first-quantized representation and
in configuration space.

2.2 Basics of Monte Carlo techniques

We list a few key elements from standard Monte Carlo techniques. In ad-
dition to serving as a brief reminder to the reader, they will help to in-
troduce several results and notations that will be useful in our discussion
of the QMC methods. For extensive discussions of Monte Carlo methods,
excellent books exist[9].

Monte Carlo methods are often used to compute many-dimensional in-
tegrals of the form:

G =

∫

Ω0

f(~x)g(~x)d~x
∫

Ω0

f(~x)d~x
, (1.7)

where ~x is a vector in a many-dimensional space and Ω0 is a domain in this
space. We will assume that f(~x) ≥ 0 on Ω0 and that it is normalizable, i.e.,
the denominator is finite. A familiar example of the integral in Eq. (1.7)
comes from classical statistical physics, where f(~x) is the Boltzmann dis-
tribution.

To compute G by Monte Carlo, we sample ~x from a probability density
function (PDF) proportional to f(~x), i.e., the PDF f̄(~x) ≡ f(~x)/

∫

Ω0

f(~x)d~x.

This means we generate a sequence {~x1, ~x2, · · · , ~xi, · · ·} so that the proba-
bility that any ~xi is in the sub-domain (~x, ~x+ d~x) is

Prob{~xi ∈ (~x, ~x+ d~x)} = f̄(~x)d~x (1.8)

Below when we refer to sampling a function f(~x), it should be understood
as sampling the corresponding PDF f̄(~x). There are different techniques
to sample a many-dimensional function f(~x). The most general and per-
haps most often used is the Metropolis algorithm, which creates a Markov
chain random walk in ~x-space whose equilibrium distribution is the desired
function.

Given M independent samples from f(~x), the integral in Eq. (1.7) is
estimated by

GM =
1

M

M∑

i=1

g(~xi). (1.9)



1. Quantum Monte Carlo Methods for Strongly Correlated Electron Systems 5

The error in the estimate decays algebraically with the number of samples:
|GM −G| ∝ 1/

√
M.

Using the results above, we can compute

G′ =

∫

Ω0

f(~x)g(~x)h(~x)d~x
∫

Ω0

f(~x)h(~x)d~x
, (1.10)

if the function h(~x) is such that both the numerator and denominator exist.
Formally

G′
M =

∑M
i=1 g(~xi)h(~xi)
∑M

i=1 h(~xi)
, (1.11)

although, as we will see, difficulties arise when h(~x) can change sign and is
rapidly oscillating.

Integral equations are another main area of applications of Monte Carlo
methods. For example[9], the integral equation

Ψ′(~x) =

∫

Ω0

K(~x, ~y) w(~y) Ψ(~y)d~y, (1.12)

can be viewed in terms of a random walk if it has the following properties:
Ψ(~y) and Ψ′(~x) can be viewed as PDF’s (in the sense of f in Eq. (1.7)),
w(~y) ≥ 0, and K(~x, ~y) is a PDF for ~x conditional on ~y. Then, given an
ensemble {~yi} sampling Ψ(~y), the following two steps will allow us to gen-
erate an ensemble that samples Ψ′(~x). First an absorption/branching pro-
cess is applied to each ~yi according to w(~yi). For example, we can make
int(w(~yi) + ξ) copies of ~yi, where ξ is a uniform random number on (0, 1).
Second we randomly walk each new ~yj to an ~xj by sampling the PDF
K(~x, ~yj). The resulting {~xj} are Monte Carlo samples of Ψ′(~x). We empha-
size that the purpose of our discussion of random walks here is to illustrate
the basic concept, which we will use later. The simple procedure described
above is thus not meant as an accurate account of the technical details
necessary for an efficient implementation.

2.3 Slater determinant space

In auxiliary-field-based QMC[10, 11, 12, 13] method, the Monte Carlo al-
gorithm works in a space of Slater determinants. The building blocks of
Slater determinants are single-particle basis states. The single-particle basis
states can be plane waves, or lattice sites in the Hubbard model, or energy
eigenstates in a mean-field potential. Often the space of single-particle ba-
sis states is truncated. Single-particle wave functions (orbitals) are formed
with the basis states. Slater determinants are then built from the single-
particle orbitals.

We first define some notations that we will use throughout the discussion
of standard auxiliary-field quantum Monte Carlo (AFQMC) and then later
the constrained path Monte Carlo (CPMC) methods.
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• N : number of single-electron basis states. For example, N can be
the number of lattice sites (L × L) in the two-dimensional Hubbard
model.

• |χi〉: the ith single-particle basis state (i = 1, 2, · · · , N). For example,
|χG〉 can be a plane wave basis state with χG(r) ∝ eiG·r, where r is
a real-space co-ordinate.

• c†i and ci: creation and annihilation operators for an electron in |χi〉.
ni ≡ c†i ci is the corresponding number operator.

• M : number of electrons (if we omit spin index, e.g., if the system
is fully polarized). In the more general case, Mσ is the number of
electrons with spin σ (σ =↑ or ↓). Of course, the choice of N above
must ensure that Mσ ≤ N .

• ϕm: single-particle orbital (we include an index m for discussions be-
low to distinguish different single-particle orbitals). A single-particle
orbital ϕm, given in terms of the single-particle basis states {|χi〉}
as

∑

i ϕi,m|χi〉 =
∑

i c
†
iϕi,m|0〉, can be conveniently expressed as an

N -dimensional vector: 






ϕ1,m

ϕ2,m

...
ϕN,m








Given M different single-particle orbitals, we form a many-body wave
function from their anti-symmetrized product:

|φ〉 ≡ ϕ̂†
1ϕ̂

†
2 · · · ϕ̂†

M |0〉 (1.13)

where the operator

ϕ̂†
m ≡

∑

i

c†i ϕi,m (1.14)

creates an electron in themth single-particle orbital {ϕ1,m, ϕ2,m, · · · , ϕN,m}.
The many-body state |φ〉 in Eq. (1.13) can be conveniently expressed as an
N ×M matrix:

Φ ≡








ϕ1,1 ϕ1,2 · · · ϕ1,M

ϕ2,1 ϕ2,2 · · · ϕ2,M

...
...

...
ϕN,1 ϕN,2 · · · ϕN,M








Each column of this matrix represents a single-particle orbital that is com-
pletely specified by its N -dimensional vector.
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If the real-space co-ordinates of the electrons are R = {r1, r2, · · · , rM},
the many-body state in Eq. (1.13) gives

〈R|φ〉 = φ(R) = det








ϕ1(r1) ϕ2(r1) · · · ϕM (r1)
ϕ1(r2) ϕ2(r2) · · · ϕM (r2)

...
...

...
ϕ1(rM ) ϕ2(rM ) · · · ϕM (rM )







,

where ϕm(r) =
∑

i ϕi,mχi(r).
The many-body state |φ〉 is known as a Slater determinant. One ex-

ample of a Slater determinant is the Hartree-Fock (HF) solution |φHF〉 =
∏

σ |φσ
HF〉, where each |φσ

HF〉 is defined by a matrix Φσ
HF whose columns are

the Nσ lowest HF eigenstates. We can now add the following to our list of
notations above:

• |φ〉: a many-body wave function which can be written as a Slater
determinant.

• Φ: an N ×M matrix which represents the Slater determinant |φ〉.
Φij will denote the matrix element of the matrix Φ in the ith row
and jth column. For example, Φij = ϕi,j above in Φ. Below when a
Slater determinant |φ〉 is referred to, it will often be helpful to think
in terms of the matrix representation Φ operationally.

• |Ψ〉 (upper case): a many-body wave function which is not necessarily
a single Slater determinant, e.g., |Ψ(n)〉 in Eq. (1.2).

Several properties of the Slater determinant are worth mentioning. For
any two real non-orthogonal Slater determinants, |φ〉 and |φ′〉, it can be
shown that their overlap integral is

〈φ|φ′〉 = det(ΦTΦ′). (1.15)

The operation on any Slater determinant by any operator B̂ of the form

B̂ = exp
( ∑

ij

c†iUijcj
)

(1.16)

simply leads to another Slater determinant[14], i.e.,

B̂|φ〉 = φ̂′ †1 φ̂
′ †
2 · · · φ̂′ †M |0〉 ≡ |φ′〉 (1.17)

with φ̂′ †m =
∑

j c
†
j Φ′

jm and Φ′ ≡ eUΦ, where U is a square matrix whose

elements are given by Uij and B ≡ eU is therefore an N × N square

matrix as well. In other words, the operation of B̂ on |φ〉 simply involves
multiplying an N ×N matrix to an N ×M matrix.
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The many-body trace of an operator which is an exponential of one-body
operators (i.e., of the form B̂ in Eq. (1.16)) or a product of exponentials
of one-body operators can be conveniently evaluated. The grand-canonical
trace, which involves summing over a complete basis for a fixed number of
particles M as well as over different numbers of particles (from 0 to N),
has a particularly simple form[10, 12]:

Tr(B̂) = det[I +B], (1.18)

where I is the N ×N unit matrix and B once again is the corresponding
matrix of the operator B̂. The canonical trace, which is for a fixed number
of particles M , is given by

TrM (B̂) =
1

M !

dM

dǫM
det[I + ǫB]

∣
∣
ǫ=0

. (1.19)

Note that this is simply the sum of all rank-M diagonal minors of the
matrix B. As we would expect, the sum over all possible values of M of
Eq. (1.19), with the appropriate factor for the chemical potential, recovers
Eq. (1.18).

For an operator Ô, we can define its expectation with respect to a pair
of Slater determinants

〈Ô〉 ≡ 〈φ|Ô|φ
′〉

〈φ|φ′〉 (1.20)

or with respect to a propagator B under the finite-temperature grand-
canonical formalism of Eq. (1.18)

〈Ô〉 ≡ Tr(ÔB̂)

Tr(B̂)
. (1.21)

The “bar” distinguishes these from the true interacting many-body expec-
tations in Eq.’s (1.3) and (1.5). The latter are of course what we wish to
compute with QMC.

The simplest example of Eq.’s (1.20) and (1.21) is the single-particle

Green’s function Gij ≡ 〈cic†j〉. In the ground-state formalism,

Gij ≡
〈φ|cic†j |φ′〉
〈φ|φ′〉 = δij − [Φ′(ΦTΦ′)−1ΦT]ij . (1.22)

In the finite-temperature grand-canonical formalism

Gij ≡
Tr(cic

†
jB̂)

Tr(B̂)
= (I +B)−1

ij . (1.23)

Given the Green’s function G, the general expectation defined in Eq.’s
(1.20) and (1.21) can be computed for most operators of interest. This is an
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important property that will be used in ground-state and finite-temperature
QMC calculations. For example, we can calculate the expectation of a gen-
eral two-body operator, Ô =

∑

ijklOijklc
†
i c

†
jckcl, under definitions (1.20)

and (1.21):

〈Ô〉 =
∑

ijkl

Oijkl(G
′
jkG

′
il −G′

ikG
′
jl), (1.24)

where the matrix G′ is defined as G′ ≡ I −G.

2.4 Hubbard-Stratonovich transformation

In order to carry out Eq.’s (1.2) and (1.6) in the Slater-determinant space

we have introduced above, we write the many-body propagator e−∆τĤ

in single-particle form. For simplicity we will treat the system as spin-
polarized and suppress the spin index in most of the discussions below. It
is, however, straightforward to generalize the discussions to include spins.
Assuming that the many-body Hamiltonian involves two-body interactions
only, we can write it as

Ĥ = K̂ + V̂ =
∑

i,j

Kij(c
†
i cj + c†jci) +

∑

ijkl

Vijkl c
†
i c

†
jckcl. (1.25)

For example, K̂ and V̂ can be the kinetic and potential energy operators,
respectively. With a small ∆τ > 0, the Trotter approximation can be used:

e−∆τĤ ≈ e−∆τK̂e−∆τV̂ , (1.26)

which introduces a Trotter error. For actual implementation of the algo-
rithms we discuss here, higher order Trotter break-ups are often used. The
Trotter error can be further reduced with an extrapolation procedure after
separate calculations have been done with different values of ∆τ .

The K̂ part of the propagator in (1.26) is the exponential of a one-body

operator. The V̂ part is not. It is, however, possible to rewrite e−∆τV̂ in this
desired form through a so-called Hubbard-Stratonovich transformation[15].
As we will show below, V̂ can be written as a sum of terms of the form
λv̂2/2, where λ is a constant and v̂ is a one-body operator similar to K̂.
The Hubbard-Stratonovich transformation then allows us to write

e−∆τ/2 λ v̂2

=

∫ ∞

−∞
dx
e−

1

2
x2

√
2π

ex
√
−∆τλ v̂, (1.27)

where x is an auxiliary-field variable. The constant in the exponent on the
right-hand side can be real or imaginary dependent on the sign of λ. The
key is that the quadratic form (in v̂) on the left is replaced by a linear one
on the right.



1. Quantum Monte Carlo Methods for Strongly Correlated Electron Systems 10

We now show one way to write V̂ as a sum of λv̂2/2. With the most
general form of V̂ in Eq. (1.25) we can cast Vijkl in the form of a Hermitian
matrix by introducing two indices α = (i, l) and β = (k, j) and letting
Vαβ = V(i,l),(k,j) = Vijkl. The Hermitian matrix V can then be diagonalized

and written as V = RΛR†, where R is a matrix whose columns are the
eigenvectors of V and Λ is a diagonal matrix containing the corresponding
eigenvalues λα. That is

Vαβ =
∑

γ

RαγλγR
⋆
βγ . (1.28)

The two-body operator V̂ can therefore be written as

V̂ =
∑

ijkl

Vijkl c
†
i clc

†
jck −

∑

ijkl

Vijkl c
†
i ck δjl

=
∑

γ

λγ(
∑

il

R(i,l)γc
†
i cl)(

∑

jk

R⋆
(k,j)γc

†
jck)−

∑

ik

(
∑

j

Vijkj)c
†
i ck.

Noting that V̂ is Hermitian, we can put the above in a more symmetric
form

V̂ =
1

2

∑

γ

λγ{ρ̂γ , ρ̂
†
γ}+ ρ̂0, (1.29)

where the one-body operators are defined as ρ̂γ ≡
∑

ilR(i,l)γc
†
i cl and ρ̂0 ≡

−∑

ik[
∑

j(Vijkj + Vjijk)/2]c†i ck. Since

{ρ̂γ , ρ̂
†
γ} =

1

2
[(ρ̂γ + ρ̂†γ)2 − (ρ̂γ − ρ̂†γ)2], (1.30)

we have succeeded in writing V̂ in the desired form.
The way to decompose V̂ above leads to approximately 2N2 auxiliary

fields. Often the interaction simplifies V̂ and the number of auxiliary fields
can be much reduced. In fact, certain type of interactions have partic-
ularly simple forms of Hubbard-Stratanovic transformations. For exam-
ple, for the repulsive on-site interaction Uni↑ni↓ (↑ and ↓ denote elec-
tron spin) in the Hubbard model, an exact , discrete Hubbard-Stratonovich
transformation[16] exists:

e−∆τUni↑ni↓ = e−∆τU(ni↑+ni↓)/2
∑

xi=±1

1

2
eγxi(ni↑−ni↓), (1.31)

where the constant γ is determined by cosh(γ) = exp(∆τU/2). Similarly,
for an attractive interaction V ni↑ni↓ with V < 0:

e−∆τV ni↑ni↓ = e−∆τV (ni↑+ni↓−1)/2
∑

xi=±1

1

2
eγxi(ni↑+ni↓−1), (1.32)
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where cosh(γ) = exp(∆τ |V |/2)
If we denote the collection of auxiliary fields by ~x and combine one-body

terms from K̂ and V̂ , we obtain the following compact representation of
the outcome of the HS transformation:

e−∆τĤ =

∫

d~x p(~x)B̂(~x), (1.33)

where p(~x) is a probability density function (e.g., a multi-dimensional Gaus-
sian). The propagator B̂(~x) in Eq. (1.33) has a special form, namely, it is a
product of operators of the type in Eq. (1.16), with Uij depending on the

auxiliary field. The matrix representation of B̂(~x) will be denoted by B(~x).
In essence, the HS transformation replaces the two-body interaction by

one-body interactions with a set of random external auxiliary fields. In
other words, it converts an interacting system into many non-interacting

systems living in fluctuating external auxiliary-fields. The sum over all
configurations of auxiliary fields recovers the interaction.

Different forms of the HS transformation exist[17, 18]. It is reasonable to
expect that they can affect the performance of the QMC method. Indeed
experience shows that they can not only impact the statistical accuracy,
but also lead to different quality of approximations under the constrained
path methods that we discuss below. Therefore, although we discuss the
algorithms under the generic form of Eq. (1.33), we emphasize that it is
worthwhile to explore different forms of the HS transformation in an actual
implementation.

3 Standard Auxiliary-Field Quantum Monte Carlo

In this section we briefly describe the standard ground-state[11, 13] and
finite-temperature[10, 12] auxiliary-field quantum Monte Carlo (AFQMC)
methods. We will rely on the machinery established in the previous section.
Our goal is to illustrate the essential ideas, in a way which will facilitate
our discussion of the sign problem and help introduce the framework for
the constrained path Monte Carlo methods. We will not go into details
such as how to efficiently sample the auxiliary fields or how to stabilize
the matrices. They are described in the literature. In addition, although
the approaches are not identical, we will see these issues manifested in the
next section and gain sufficient understanding of them when we discuss the
corresponding constrained path Monte Carlo methods.
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3.1 Ground-state method

Ground-state expectation 〈Ô〉 can now by computed with (1.2) and (1.33).
The denominator is

〈ψ(0)|e−n∆τĤ e−n∆τĤ |ψ(0)〉

=

∫

〈ψ(0)|
[ 2n∏

l=1

d~x(l)p(~x(l))B̂(~x(l))
]

|ψ(0)〉

=

∫ [∏

l

d~x(l)p(~x(l))
]

det
(

[Ψ(0)]T
∏

l

B(~x(l))Ψ(0)
)

. (1.34)

In the standard ground-state AFQMC method[10], a (sufficiently large)
value of n is first chosen and fixed throughout the calculation. If we useX to
denote the collection of the auxiliary-fields X = {~x(1), ~x(2), . . . , ~x(2n)} and
D(X) to represent the integrand in Eq. (1.34), we can write the expectation
value of Eq. (1.3) as

〈Ô〉 =

∫
〈Ô〉D(X) dX
∫
D(X) dX

=

∫
〈Ô〉

∣
∣D(X)

∣
∣ s(X) dX

∫ ∣
∣D(X)

∣
∣ s(X) dX

, (1.35)

where
s(X) ≡ D(X)/

∣
∣D(X)

∣
∣ (1.36)

measures the “sign” of D(X). The non-interacting expectation for a given
X is that defined in Eq. (1.20):

〈Ô〉 ≡ 〈φL|Ô|φR〉
〈φL|φR〉

(1.37)

with

〈φL| = 〈ψ(0)| B̂(~x(2n))B̂(~x(2n−1)) · · · B̂(~x(n+1))

|φR〉 = B̂(~x(n))B̂(~x(n−1)) · · · B̂(~x(1)) |ψ(0)〉,

which are both Slater determinants.
D(X) as well as 〈φL| and |φR〉 are completely determined by the path

X in auxiliary-field space. The expectation in Eq. (1.35) is therefore in the

form of Eq. (1.10), with f(X) = |D(X)| and g(X) = 〈Ô〉. The important
point is that, for each X, |D(X)| is a number and g(X) can be evaluated
using Eq.’s (1.22) or (1.24). Often the Metropolis Monte Carlo algorithm[9]
is used to sample auxiliary-fields X from |D(X)|. Any 〈Ô〉 can then be
computed following the procedure described by Eq. (1.9).

The Metropolis Monte Carlo algorithm allows one to, starting from an
(arbitrary) initial configuration of X, create a random walk whose equilib-
rium distribution is f(X). A kernel K(X ′,X) must be chosen prior to the
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calculation which is a probability density function of X ′ (conditional on
X). The only other condition on K is ergodicity, i.e., it allows the random
walk to eventually reach any position from any other position in X-space.
For example, it can be a uniform distribution in a hyper-cube of linear
dimension ∆ centered at X

K(X ′,X) =

{

1/∆2nd, if X ′ inside hyper-cube
0, otherwise

where ∆ is a parameter and d is the dimensionality of the auxiliary-field ~x.
The random walk resembles that in Eq. (1.12). A move from X to X ′

is proposed by sampling an X ′ according to K(X ′,X). The key of the
Metropolis algorithm is an acceptance probability

A(X ′,X) = min
[K(X,X ′)f(X ′)

K(X ′,X)f(X)
, 1

]

(1.38)

whose role is similar to that of w in Eq. (1.12). The one important difference
is that, if the outcome of A(X ′,X) is to reject X ′, X is kept and counted
as one new Monte Carlo sample — and hence one new step in the random
walk, even though the walker did not actually move.

The choice of K, which has a great deal of freedom, controls the efficiency
of the random walk, i.e., how quickly it converges, how correlated successive
steps of the random walk are, etc. A choice that is perhaps the most com-
mon in practice is to “sweep” through the field one component at a time. A
change is proposed for only one component of the many-dimensional vector
X, from a kernel K(~x′i, ~xi) in similar form to K , while the rest of X is
kept the same; the acceptance/rejection procedure is then applied. With
the newly generated field, a change is proposed on the next ((l+1)-th) com-
ponent and the step above is repeated. The “local” nature of this choice of
the kernel can often lead to simplifications in the computation of A.

3.2 Finite-temperature method

The standard finite-temperature auxiliary-field QMC method works in the
grand-canonical ensemble. This means that the Hamiltonian contains an
additional term −µ∑

i ni which involves the chemical potential µ. The
term leads to an additional diagonal one-body operator in the exponent in
Eq. (1.16). We will assume that the resulting term has been absorbed in B̂
in Eq. (1.33).

Substituting Eq. (1.33) into Eq. (1.6) leads to

Z =

∫ [∏

l

d~xlp(~xl)
]

Tr[B̂(~xL) · · · B̂(~x2)B̂(~x1)]. (1.39)

If we apply Eq. (1.18) to the above and again use X to denote a complete
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path in auxiliary-field space, X ≡ {~x1, ~x2, · · · , ~xL}, we obtain

Z =

∫

det[I +B(~xL) · · ·B(~x2)B(~x1)] p(X) dX. (1.40)

Again representing the integrand byD(X), we see that the finite-temperature
expectation in Eq. (1.5) reduces to Eq. (1.35), exactly the same expression

as in ground-state AFQMC. The non-interacting expectation 〈Ô〉 is now

〈Ô〉 ≡ Tr[Ô B̂(~xL) · · · B̂(~x2)B̂(~x1)]

Tr[B̂(~xL) · · · B̂(~x2)B̂(~x1)]
. (1.41)

Note that, as in the ground-state algorithm, this can be computed for each
X. Eq. (1.23) remains valid. The matrix B must be replaced by the ordered
product of the corresponding matrices, B(~xL) · · ·B(~x2)B(~x1). “Wrapping”
this product (without changing the ordering) gives the equal time Green’s
function at different imaginary times.

Thus we have unified the ground-state and finite-temperature AFQMC

methods with Eq. (1.35). Although the actual forms for D(X) and 〈Ô〉
are different, the finite-temperature algorithm is the same as that of the
ground state described earlier. Applying the same procedure, we can sample
auxiliary-fields X from |D(X)|, and then compute the desired many-body
expectation values from Eq. (1.35).

4 Constrained Path Monte Carlo Methods —
Ground-State and Finite-Temperature

In this section, we review the ground-state and finite-temperature con-
strained path Monte Carlo (CPMC) methods. These methods are free of
any decay of the average sign, while retaining many of the advantages of the
standard AFQMC methods. The methods are approximate, relying on what
we will generally refer to as the constrained path approximation. Below,
other than presenting a way to make a more formal connection between the
ground-state and finite-temperature methods, we will largely follow Ref.’s
[5, 7] in discussing these methods.

4.1 Why and how does the sign problem occur?

In the standard AFQMC methods, the sign problem occurs because D(X)
is not always positive.2 The Monte Carlo samples of X therefore have to

2In fact B̂(~x) is complex for a general HS transformation when the interaction
is repulsive. D(X) is therefore complex as well. We will limit our discussions here
of the sign problem and the constrained path approximation to the case where
D(X) is real, although generalizations are possible.
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D(X)

FIGURE 1. Schematic illustration of the sign problem. The X-axis represents an
abstraction of the many-dimensional auxiliary-field paths X; each point denotes a
collection of X’s. The sign problem occurs because the contributing part (shaded
area) is exponentially small compared to what is sampled, namely |D(X)|.
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 ]

FIGURE 2. Decay of the average sign as a function of inverse temperature. Note
the logarithmic scale on the vertical axis. The calculation is for a 4× 4 Hubbard
model using the finite-temperature formalism. The chemical potential is such
that the average electron density is 0.875 (corresponding to 7 ↑ 7 ↓ electrons).
The on-site repulsion U = 4. (Data courtesy of Richard Scalettar [19].)

be drawn from the probability distribution function defined by |D(X)|. As
Fig. 1 illustrates, however, D(X) approaches an antisymmetric function
exponentially as N or the the length of the path is increased. That is, its
average sign, i.e., the denominator in Eq. (1.35), vanishes at large system
size or low temperature. Thus the variance of the calculation in Eq. (1.11)
grows exponentially, which negates the advantage of the “square-root” be-
havior of a Monte Carlo calculation (cf. Eq. (1.9)). Fig. (2) shows expo-
nential decay of the average sign 〈s(X)〉 of the Monte Carlo samples as a
function of inverse temperature. This problem was largely uncontrolled in
both the ground-state and finite-temperature algorithms, preventing gen-
eral simulations at low temperatures or large system sizes.

Here we will develop a more detailed picture for the behavior ofD(X) and



1. Quantum Monte Carlo Methods for Strongly Correlated Electron Systems 16

hence for how the sign problem occurs. Under this picture the constrained
path approximation, which will eliminate the decay of the denominator in
Eq. (1.35) as a function of n or lattice size, emerges naturally.

For simplicity, we will now use one common symbol L to denote the
length of the path X. That is, in the ground-state AFQMC algorithm
in the previous section, we let L = 2n. D(X) = D(~x1, ~x2, · · · , ~xL) will
denote the corresponding integrand in either the ground-state or finite-
temperature AFQMC algorithm. We recall that the goal is to sample X
according to D(X) (although we had to resort to sampling |D(X)| in the
previous section).

To gain insight we conduct the following thought experiment[7]. We
imagine sampling the complete path X by L successive steps, from ~x1

to ~xL. We consider the contribution in Eq. (1.35) by an individual partial

path {~x1, ~x2, · · · , ~xl}:

Pl({~x1, ~x2, · · · , ~xl}) ≡
∫

D(~x1, ~x2, · · · , ~xl, ~xl+1, · · · , ~xL) d~xl+1 · · · d~xL.

(1.42)

Note that this is the same as replacing e∆τĤ by Eq. (1.33) only in the
first l time slices. For simplicity we will use B̂ to denote the many-body

propagator e∆τĤ in our discussion below, i.e, B̂ ≡ e∆τĤ . Under the ground-
state formalism,

Pl({~x1, ~x2, · · · , ~xl})
= 〈ψ(0)

[
B̂B̂ · · · B̂
︸ ︷︷ ︸

L−l

B̂(~xl) · · · B̂(~x2)B̂(~x1)]
∣
∣ψ(0)〉p(~xl) · · · p(~x1), (1.43)

while under the finite-temperature formalism

Pl({~x1, ~x2, · · · , ~xl}) = Tr[ B̂B̂ · · · B̂
︸ ︷︷ ︸

L−l

B̂(~xl) · · · B̂(~x2)B̂(~x1)]p(~xl) · · · p(~x1).

(1.44)
We consider the case when Pl = 0. This means that, after the remaining
L− l steps are finished, the collective contribution from all complete paths
that result from this particular partial path will be precisely zero. In other
words, all complete paths that have {~x1, ~x2, · · · , ~xl} as their first l elements
collectively make no contribution in the denominator in Eq. (1.35). This is
because the path integral over all possible configurations for the rest of the
path, {~xl+1, ~xl+2, · · · , ~xL}, is simply given by Eq. (1.42). In other words,
the path integral simply reproduces the B̂’s in Eq. (1.43) or (1.44), leading
to Pl({~x1, ~x2, · · · , ~xl}) which is zero by assumption.

Thus, in our thought experiment any partial path that reaches the axis
in Fig. 3 immediately turns into noise, regardless of what it does at future
l’s. A complete path which is in contact with the axis at any point belongs
to the “antisymmetric” part of D(X) in Fig. 1, whose contributions cancel.
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L 0 l

lP

Z

C

FIGURE 3. Schematic illustration of the boundary condition to control the sign
problem in AFQMC. Pl (Eq. (1.42)) is shown as a function of the length of
the partial path, l, for several paths. The remainder of the path integral (of
length L − l) is assumed to have been evaluated analytically . (See Eq. (1.42).)

All paths start from the right (l = 0) at P0, which is either 〈ψT |e
L∆τĤ |ψT 〉 > 0

(ground-state) or Z (finite-temperature). When Pl becomes 0, ensuing paths
(dashed lines) collectively contribute zero. Only complete paths with Pl > 0 for
all l (solid line) contribute in the denominator in Eq. (1.35).

As L increases, it becomes more and more likely for a path to reach
the axis at some point l. Therefore, the “noise” paths become an increas-
ingly larger portion of all paths unless paths are completely prohibited
from reaching the axis, such as in the half-filled Hubbard model with re-
pulsive interaction, where particle-hole symmetry makes D(X) positive. A
complete path X which crosses the axis at least once, i.e., a noise path,
can have a D(X) which is either positive or negative. In the Monte Carlo
sampling in AFQMC, we sample X according to |D(X)|, which makes no
distinction of such paths from the contributing ones that stay completely
above the axis. Asymptotically in L, the Monte Carlo samples consist of an
equal mixture of positive and negative contributions in D(X). The Monte
Carlo signal is lost and the Monte Carlo estimate of Eq. (1.35) becomes
increasingly noisy. This is the origin of the sign problem.

4.2 The constrained-path approximation

P0 is positive, because 〈ψT |eL∆τĤ |ψT 〉 > 0 (ground-state formalism) and
Z > 0 (finite-temperature). Pl changes continuously with l at the limit
∆τ → 0. Therefore a complete path contributes if and only if it stays en-
tirely above the axis in Fig. 3. Thus, in our thought experiment, imposition
of the boundary condition[5, 7, 20]

P1({~x1}) > 0

P2({~x1, ~x2}) > 0

· · ·
PL({~x1, ~x2, · · · , ~xL}) > 0 (1.45)
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will ensure all contributing complete paths to be selected while eliminating
all noise paths. The axis acts as an infinitely absorbing boundary. A partial
path is terminated and discarded as soon as it reaches the boundary. By
discarding a path, we eliminate all of its future paths, including the ones
that would eventually make positive contributions. The boundary condi-
tion makes the distribution of complete paths vanish at the axis, which
accomplishes complete cancellation of the negative and the corresponding
positive contributions in the antisymmetric part of D(X).

In practice B̂ is of course not known. We replace it by a known trial
propagator B̂T . The boundary condition in Eq. (1.45) is then clearly ap-
proximate. Results from our calculation will depend on the trial propagator
used in the constraint. We expect the quality of the approximation to im-
prove with a better B̂T . This is the basic idea of the constrained path
approximation.

For ground-state calculations, let us imagine taking L to infinity. If B̂T

is a mean-field propagator, the wave function

〈ψT | = lim
L→∞

〈ψ(0)|B̂L−l
T (1.46)

can be thought of as the corresponding ground-state solution. The right-
hand side of Eq. (1.43) can then be evaluated:

PT
l ≡ 〈ψT |φ(l)〉p(~xl) · · · p(~x1), (1.47)

where the Slater determinant that results from a particular partial path is
defined as

|φ(l)〉 ≡ B̂(~xl) · · · B̂(~x2)B̂(~x1)|ψ(0)〉. (1.48)

The approximate condition in Eq. (1.45) can then be written as

〈ψT |φ(l)〉 > 0. (1.49)

Notice that the constraint now becomes independent of the length of the
path l. It is expressed in terms of the overlap of a determinant with a
trial wave function |ψT 〉. For a choice of |ψT 〉 that is a single Slater deter-
minant or a linear combination of Slater determinants, Eq. (1.15) allows
straightforward computation of the overlap in Eq. (1.49).

In principle, we could keep L finite and directly implement the constraint
in the framework of the standard AFQMC, using the propagator B̂T instead
of |ψT 〉. But, as we will see below, the formalism above lends itself more
naturally to the random walk realization of the ground-state method.

The constraint is manifested in one other way in the computation of
expectations of operators Ô that do not commute with Ĥ. Because we
need to insert Ô in the middle in the numerator of Eq. (1.37), we will have
to “back-propagate”[5, 3] from the left to obtain a 〈φL|. The constraint,
however, is implemented in the opposite direction, as we sample the path
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from right to left. A set of determinants along the path of a random walk
which does not violate the constraint at any step when going from right to
left may violate it any even number of times when going from left to right.
This sense of direction means that the expectation 〈Ô〉 we compute is not
strictly 〈ψc

0|Ô|ψc
0〉/〈ψc

0|ψc
0〉, with |ψc

0〉 the approximate ground-state wave
function under the constraint. This difference is not crucial, however, since
it is expected to be of the same order as the error due to the constrained
path approximation itself.

For finite-temperature calculations, the right-hand side of Eq. (1.44) can
be evaluated if B̂T is in the form of a single-particle propagator

PT
l ≡ det[I +BTBT · · ·BT

︸ ︷︷ ︸

L−1

B(~x1)]p(~xl) · · · p(~x1), (1.50)

where, following our convention, BT is the matrix representation of B̂T .
Combining this with Eq. (1.45) leads to the following matrix representation
of the approximate boundary condition:

det[I +BTBT · · ·BT
︸ ︷︷ ︸

L−1

B(~x1)] > 0

det[I +BTBT · · ·BT
︸ ︷︷ ︸

L−2

B(~x2)B(~x1)] > 0

· · ·
det[I +B(~xL) · · ·B(~x2)B(~x1)] > 0 (1.51)

Formally, the constrained path approximation in Eq.’s (1.49) and (1.51)
has similarity to the fixed-node[21, 22, 23] (ground-state) or restricted-
path[24] (finite-temperature) approximation in configuration space3 Sig-
nificant differences exist, however, because of the difference between the
real space and a Slater determinant space, which is non-orthogonal.

The goal of the new CPMC methods is to carry out the thought ex-
periment stochastically. We wish to generate Monte Carlo samples of X
which both satisfy the conditions in (1.49) or (1.51) and are distributed
according to D(X). The most natural way to accomplish this is perhaps to
incorporate the boundary conditions into the standard AFQMC algorithm,
for example, as an additional acceptance condition. However, such an ap-
proach is likely to be inefficient: The boundary condition is non-local and
breaks translational invariance in imaginary time, which requires simul-
taneous updating of the entire path. Without a scheme to propose paths
that incorporates information on future contributions, it is difficult to find
complete paths which satisfy all the constraints, especially as L increases.

3See the Appendix for a brief description of the fixed-node approximation for
lattice Fermion systems.
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We therefore seek to sample paths via a random walk whose time variable
corresponds to the imaginary time l. We will see that we must introduce
importance sampling schemes to guide the random walks by their projected
contribution in D(X). Below we discuss details of such schemes.

4.3 Ground-state constrained path Monte Carlo (CPMC)
method

We start from Eq. (1.2). Using (1.33), we write it as

|ψ(l+1)〉 =

∫

d~x p(~x)B̂(~x)|ψ(l)〉. (1.52)

In the random walk realization of this iteration, we represent the wave
function at each stage by a finite ensemble of Slater determinants, i.e.,

|ψ(l)〉 ∝
∑

k

w
(l)
k |φ

(l)
k 〉, (1.53)

where k labels the Slater determinants and an overall normalization factor
of the wave function has been omitted. A weight factor w

(l)
k is introduced

for each walker, even though in Eq. (1.52) the kernal p is normalized. This
is because single-particle orbitals in a Slater determinants cease to be or-
thogonal to each other as a result of propagation by B̂. When they are
re-orthogonalized (see Section 4.5), an overall factor appears, which we
will view as the w term in the integral equation Eq. (1.12).

The structure of the random walk now resembles that of Eq. (1.12).
For each random walker we sample an auxiliary-field configuration ~x from
the probability density function p(~x) and propagate the walker to a new

one via Φ
(l+1)
k = B(~x)Φ

(l)
k . If necessary, a re-orthogonalization procedure

(e.g., modified Gram-Schmidt) is applied to Φ
(l)
k prior to the propagation:

Φ
(l)
k = [Φ

(l)
k ]′R, where R is an M × M upper-triangular matrix. [Φ

(l)
k ]′

is then used in the propagation instead; the weight of the new walker is

w
(l+1)
k = w

(l)
k det(R).

The simple random walk procedure is correct and can be very useful for
thinking about many conceptual issues. It is, however, not efficient enough
as a practical algorithm in most cases of interest, because the sampling
of ~x is completely random with no regard to the potential contribution to
D(X). The idea of importance sampling is to iterate a modified equation
with a modified wave function, without changing the underlying eigenvalue
problem of (1.52). Specifically, for each Slater determinant |φ〉, we define
an importance function

OT (φ) ≡ 〈ψT |φ〉, (1.54)

which estimates its overlap with the ground-state wave function. We can
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then rewrite equation (1.52) as

|ψ̃(l+1)〉 =

∫

d~xl+1p̃(~xl+1)B̂(~xl+1)|ψ̃(l)〉, (1.55)

where the modified “probability density function” is

p̃(~xl+1) =
OT (φ(l+1))

OT (φ(l))
p(~xl+1). (1.56)

It is easy to see that the new kernel p̃ in Eq. (1.56) can be written in
terms of the trial partial path contributions in Eq. (1.47):

p̃(~xl+1) =
PT

l+1

PT
l

. (1.57)

As we will see, this is formally analogous to the importance-sampling kernel
in the finite-temperature algorithm we discuss next.

With the new kernel p̃, the probability distribution for ~xl+1 vanishes
smoothly as PT

l+1 approaches zero, and the constraint is naturally imposed.
The auxiliary field ~xl+1 is sampled according to our best estimate of the
partial path contributions (from the trial propagator/wave function). As
expected, p̃(~x) is a function of both the current and future positions in
Slater-determinant space. Further, it modifies p(~x) such that the probabil-
ity is increased when ~x leads to a determinant with larger overlap and is
decreased otherwise. It is trivially verified that equations (1.52) and (1.55)
are identical.

To better see the effect of importance sampling, we observe that if |ψT 〉 =
|ψ0〉, the normalization

∫
p̃(~x)d~x becomes a constant. Therefore the weights

of walkers remain a constant and the random walk has no fluctuation.
In the random walk, the ensemble of walkers { |φ(l)

k 〉 } now represents the

modified wave function: |ψ̃(l)〉 ∝ ∑

k w
(l)
k |φ

(l)
k 〉. The true wave function is

then given formally by

|ψ(l)〉 ∝
∑

k

w
(l)
k |φ

(l)
k 〉/OT (φ

(l)
k ), (1.58)

although in actual measurements it is |ψ̃(l)〉 that is needed and division by
OT does not appear. The random walk process is similar to that discussed
for Eq. (1.52), but with p(~x) replaced by p̃(~x). The latter is in general not a
normalized probability density function, and we denote the normalization

constant for walker k by N(φ
(l)
k ) and rewrite the iterative relation as

|φ(l+1)
k 〉 ← N(φ

(l)
k )

∫

d~x
p̃(~x)

N(φ
(l)
k )

B(~x)|φ(l)
k 〉. (1.59)

This iteration now forms the basis of the ground-state constrained path

Monte Carlo algorithm. For each walker |φ(l)
k 〉, one step of the random

walk consists of:
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1. sampling an ~x from the probability density function p̃(~x)/N(φ
(l)
k )

2. constructing the corresponding B(~x) and propagating the walker Φ
(l)
k

by it to generate a new walker

3. assigning a weight w
(l+1)
k = w

(l)
k N(φ

(l)
k ) to the new walker

Note that, in contrast with the primitive algorithm in Eq. (1.52), the
weight factor of a walker does not need to be modified here when the re-
orthogonalization procedure is applied. This is because the upper-triangular
matrix R only contributes to the overlap OT , which is already represented
by the walker weight. After each modified Gram-Schmidt procedure, R can
simply be discarded.

4.4 Finite-temperature method

We again construct an algorithm which builds directly into the sampling
process both the constraints and some knowledge of the projected contri-
bution. In terms of the trial projected partial contributions PT

l defined in
Eq. (1.50), the fermion determinant D(X) can be written as

D(X) =
PT

L

PT
L−1

PT
L−1

PT
L−2

· · · P
T
2

PT
1

PT
1

PT
0

PT
0 . (1.60)

We again construct the path X by a random walk of L steps, correspond-
ing to stochastic representations of the L ratios in Eq. (1.60). In Fig. 4
the sampling procedure for one walker is illustrated schematically. At the
(l + 1)-th step, we sample ~xl+1 from the conditional probability density
function defined by p̃(~xl+1) = PT

l+1/PT
l , which is precisely the same as

Eq. (1.57) in the ground-state method. Like in the ground-state method or
in Green’s function Monte Carlo, we simultaneously keep an ensemble of
walkers, which undergo branching in their random walks (of L steps).

In the random walk, each walker is a product of BT ’s and B(~x)’s. They
are initialized to PT

0 , with overall weight 1. At the end of the l-th step,
each walker has the form

BTBT · · ·BT
︸ ︷︷ ︸

L−l

B(~xl) · · ·B(~x2)B(~x1) (1.61)

where {~xl, · · · , ~x2, ~x1} is the partial path already sampled for this walker.
Each step for a walker is formally identical to that in the ground-state
method:

1. pick an ~xl+1 from the probability density function p̃(~xl+1)

2. advance the walker by replacing the BT next to B(~xl) by B(~xl+1)
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1

L--1

FIGURE 4. Illustration of the sampling procedure in the algorithm. Circles repre-
sent auxiliary-fields ~xl. A row shows the field configuration at the corresponding
step number shown on the right. Within each row, the imaginary-time index l

increases as we move to the left, i.e., the first circle is ~x1 and the last ~xL. Empty
circles indicate fields which are not “activated” yet, i.e., B̂T is still in place of
B̂. Solid circles indicate fields that have been sampled, with the arrow indicating
the one being sampled in the current step.

3. multiply the overall weight of the walker by the normalization factor
of p̃(~xl+1).

The basic idea of the algorithm is, similar to the ground-state method,
to select ~xl according to the best estimate of its projected contribution in
Z. Note that the probability distribution for ~xl again vanishes smoothly
as PT

l approaches zero. This naturally imposes the boundary condition
in Eq. (1.51). The Monte Carlo samples are generated from a probability
distribution function of the contributing paths only (solid lines in Fig. 3),
which is more efficient than sampling paths from |D(X)| and imposing the
boundary condition as an additional acceptance/rejection step.

4.5 Additional technical issues

Implementation of the constraint at finite ∆τ

In actual simulations ∆τ is finite and paths are defined only at a discrete set
of imaginary times. The boundary condition on the underlying continuous
paths is the same, namely that the probability distribution must vanish at
the axis in Fig. 3.

In Fig. 5, we illustrate how the boundary condition is imposed under
the discrete representation. The “contact” point with the axis is likely to
be between time slices and not well defined, i.e., Pl may be zero at a non-
integer value of l. To the lowest order, we can terminate a partial path
when its Pl first turns negative. That is, we still impose Eq. (1.45) in our
thought experiment to generate paths. In Fig. 5, this means terminating
the path at l = n (point B) and thereby discarding all its future paths
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FIGURE 5. Imposition of the boundary condition at finite ∆τ . Paths are discrete.
The point of contact, C (see Fig. 3), must be approximated, either by B (low order
algorithm) or by interpolation between B and A (higher order).

(represented by the dashed lines ‘BS...’ and ‘BT...’).
We actually use a higher order approximation, by terminating at either

l = n − 1 or l = n, i.e., either point B or point A. The probability for
terminating at A is chosen such that it approaches 1 smoothly as Pn−1 → 0,
for example, pA = 1/[1+Pn−1/|Pn|]. If A is chosen, all future paths from A
are discarded (represented by ‘AR...’ and ‘AB...’); otherwise we terminate
at B as above.

It is important to note that, in both approaches, the finite-∆τ error in
imposing the boundary condition vanishes as ∆τ → 0. The latter algorithm,
which resembles the use of mirror images to construct Green’s functions
that vanish at a boundary, is a higher order approach, and is sometimes
referred as a “mirror correction.”

Population control and bias correction

In the CPMC methods walkers carry weights. Often some form of popu-
lation control is applied. The procedure we use to control the population
is similar to that used in many GFMC calculations. First, a branching
(or birth/death) scheme is applied, in which walkers with large weights
are replicated and ones with small weights are eliminated by probabilities
defined by the weights. There exist various ways to do this[25], with the
guideline being that the process should not change the distribution statis-
tically. In general, how this step is done only affects the efficiency of the
algorithm, but does not introduce any bias.

Branching allows the total number of walkers to fluctuate and possibly
become too large or too small. Thus as a second step, the population size
is adjusted, if necessary, by rescaling the weights with an overall factor.
Re-adjusting the population size, i.e., changing the overall normalization
of the population, does introduce a bias[25].

In the ground-state algorithm, we correct for this bias by carrying the m
most recent overall rescaling factors and including them in the estimators
when computing expectation values. In the calculation we keep a stack
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which stores the m latest factors, f (j) (j = 1,m). Suppose that at the
current step the total number of walkers exceeds the pre-set upper bound.
We modify the weight of each walker by a constant factor f < 1 which
reduces the population size to near the expected number. We then replace
the oldest f (j) in the stack by f . Whenever we compute expectation values,
we multiply the weight of each walker by 1/

∏

j f
(j). In our calculations on

the Hubbard model, m is typically between 5 and 10. As we include more
such factors, i.e., increasing m, the bias is reduced, but the statistical error
increases. On the other hand, as we reduce m, the statistical error becomes
smaller, but the bias increases. The choice of m is thus a compromise
between these two.

In finite-temperature calculations, we generally keep all overall rescaling
factors throughout the L steps of the random walk. The global product of
these rescaling factors are used in the computation of expectation values.
Clearly, the overall factor only matters when we wish to combine the results
from separate runs (each of L steps). It is advantageous to make the number
of walkers as large as possible in finite-temperature calculations so as to
reduce the appearance of these overall rescaling factors.

Another approach to eliminate — or at least to reduce — bias is to do
several calculations with different (average) population sizes and extrapo-
late to the infinite population limit. Although this is in general less efficient,
it is straightforward to implement.

Clearly, the schemes we have described to correct for bias have some
arbitrariness and further improvements are possible. But this should not
be a major factor in the calculation. In cases where the bias is substan-

tially larger than can be handled by correction schemes in this spirit, it
would most likely be more productive to attempt to improve the impor-
tance sampling and the algorithm, rather than details of the bias correction
scheme.

Stabilizing matrix products

In either the ground-state or finite-temperature method, repeated multi-
plications of the matrix B(~x) can lead to a numerical instability. Eventu-
ally round-off errors will dominate. The product represents an unfaithful
propagation of the single-particle propagators along the path. The same
instability appears in the standard AFQMC methods. The problem is
controlled[12] by a numerical stabilization technique that requires the pe-
riodic re-orthonormalization of the product. Our approach in the CPMC
method is similar. The differences are a result of the different sampling
procedures, namely the random walk formalism here versus Metropolis
sampling in the standard methods where the entire path X is stored all
at once.

In the ground-state method, we use a modified Gram-Schmidt procedure

to stabilize the Slater determinants |φ(l)
k 〉. The procedure is simpler than
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the corresponding ground-state AFQMC. For each walker |φ〉, we factor
the matrix Φ as Φ = QR, where Q is a matrix whose columns are a set
of orthonormal vectors representing the re-orthogonalized single-particle
orbitals. R is a triangular matrix. Note that Q contains all the information
about the walker |φ〉. R, on the other hand, only contributes to the overlap
of |φ〉. As we mentioned at the end of Section 4.3, with importance sampling
only Q needs to be kept to represent the walker.

The instability in the ground-state formalism is directly related to the
collapse to a bosonic ground state. That is, if we let the propagation con-
tinue without any stabilization procedure, all single-particle orbitals each
walker would become the same. In Green’s function Monte Carlo this actu-
ally happens and is the first cause for the sign problem. Here the instability
can be eliminated by the re-orthonormalization procedure because a walker
is explicitly a Slater determinant, not a single point in configuration space.
The procedure to stabilize the Slater determinants is like analytically can-
celing out the bosonic component. In GFMC it is possible to do such a
cancellation stochastically, but the cancellation of walkers of positive and
negative signs requires a large density of walkers and does not scale well
with system size[26]. With Slater determinants, antisymmetry is automat-
ically imposed in each walker. This would suggest that the sign problem is
reduced in this formalism compared to GFMC. One trivial observation that
is consistent with this is the case of a non-interacting system, where CPMC
does not suffer from the sign problem and has zero-variance, while GFMC
does have a sign problem and still requires the fixed-node approximation.

In the finite-temperature method, the objects of interest in the calcula-
tion are of the form in Eq. (1.61). We store the product of BT ’s at regular
intervals from 1 to L. For each walker, the B(~x) part is stored as a product
of three N×N square matrices: UDV , where U is full, D is diagonal, and V
is upper-triangular. As a random walker takes a step, a B(~xl) is multiplied
to the left of UDV . Periodically, the product UD is rewritten as U ′D′V ′′

for each walker. V ′′V is then combined to obtain a new upper-triangular
matrix V ′. The process can be carried out at regular imaginary-time inter-
vals as required by the severity of the problem.

5 Illustrative Results

In a variety of benchmark calculations[5, 3, 7, 27], on the Hubbard model
in one- and two-dimensions, the constrained path Monte Carlo methods
have produced very accurate estimates of the energy as well as expectation
values of other observables. Practically, running on current workstations the
systematic error of CPMC, even for small (6× 6) systems, is often smaller
than the statistical error of the standard AFQMC. The statistical errors
in the latter increase rapidly with system size and inverse temperature.
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(For example, at 12 × 12, to achieve the same statistical error as CPMC,
ground-state AFQMC would have to run at least four orders of magnitude
longer[28, 5]).

The CPMC methods have seen various applications[4, 27, 29] to study the
Hubbard model, the periodic Anderson model, and the three-band Hubbard
model. It has also been applied[30] to systems including zeolites and organic
superconductors, and in nuclear physics. Here, we show a few benchmark
results on the two-dimensional Hubbard model. The model provides a good
test case, with both its challenging nature and the availability of certain
benchmark data. Our goal here is to illustrate the general behavior of the
algorithms. Many more results from benchmark studies can be found in the
references.

In Table 1.1 we show results from Ref. [5]. It compares ground-state en-
ergies from zero-temperature CPMC with available data from other numer-
ical approaches, including stochastic diagonalization (SD) [31], AFQMC,
and density-matrix renormalization group (DMRG) [32] methods. The trial
Slater determinant |ψT 〉 in CPMC is either a non-interacting (free) or
an unrestricted Hartree-Fock (uHF) wave function. The SD method uses
Monte Carlo methods to construct a basis for approximating the ground
state wave function of the system. Since an explicit basis is used, no sign
problem occurs; however, an exponential growth in computing time occurs
reflecting the increased effort in selecting members of the basis as system
size increases. In contrast, the AFQMC method is in principle exact, as we
have seen, but suffers from exponential growth in computing time as sys-
tem size increases because of the sign problem. Finally, the DMRG method
is a variational method that has proved very effective for one-dimensional
and quasi-one-dimensional systems.

In Table 1.2, we show results for a 4 × 4, U = 4 system. The av-
erage density is chosen such that the sign problem is the most severe.
(See Fig. 2.) This limits the range of temperatures where accurate cal-
culations can be carried out with the standard AFQMC algorithm. The
system hence presents a challenging test case for the CPMC method. At
high T , the CPMC algorithm gives results in excellent agreement with
AFQMC results[19], which are exact. At low T , it reaches convergence
and leads to results in good agreement with those from T = 0K exact
diagonalization[34].

6 Summary

In summary, we have reviewed quantum Monte Carlo methods, particularly
auxiliary-field-based methods, for strongly correlated electron systems. We
have developed a formalism here that unifies the different methods and
allows for a systematic understanding of their strengths and weaknesses
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TABLE 1.1. Hubbard model ground-state energies from ground-state CPMC sim-
ulations compared with available results from other approaches. The first two
columns indicate system size and electron filling (L×L and M↑M↓, respectively).
The interaction strength U is 4. The stochastic diagonalization (SD) results are
from [31]; the AFQMC results are from [28]; the density-matrix renormalization
group (DMRG) results on two-chains are from [33]. The statistical errors are in
the last one or two digits, as indicated.

system |ψT 〉 ECPMC ESD EAFQMC

4×4 5↑ 5↓ free -19.582(5) -19.58 -19.58(1)
6×6 13↑ 13↓ free -42.34(2) -40.77 -42.32(7)
6×6 14↑ 14↓ uHF -40.17(2) -40.44(22)
8×8 25↑ 25↓ free -72.48(2) -67.00 -72.80(6)
8×8 27↑ 27↓ uHF -67.46(4) -67.55(19)

10×10 41↑ 41↓ free -109.55(3) -109.7(6)
12×12 61↑ 61↓ free -153.43(5) -151.4(1.4)

system |ψT 〉 ECPMC EDMRG

2×8 7↑ 7↓ free -13.067(4) -13.0664(2)
2×16 14↑ 14↓ free -26.87(2) -26.867(3)

TABLE 1.2. Comparison of finite-temperature and ground-state CPMC (indi-
cated by FT and GS, respectively) with standard AFQMC and exact diagonal-
ization (ED). G(l) is the average Green’s function 〈c†i+lσciσ〉, and Pd(l) the d-wave
pairing correlation[35], at separation l = (lx, ly). Numbers in parentheses indicate
statistical errors in the last digit.

β E/N G(1, 0) G(2, 2) Pd(2, 1)

3 CPMC-FT −0.9437(8) 0.1631(1) −0.0415(1) 0.0625(2)
AFQMC −0.9434(3) 0.1631(1) −0.0418(1) 0.0630(3)

6 CPMC-FT −0.9648(6) 0.1663(3) −0.0470(4) 0.077(2)
AFQMC −0.965(3) 0.1662(2) −0.0465(2) 0.083(3)

20 CPMC-FT −0.977(2) 0.166(1) −0.050(1) 0.078(2)
∞ CPMC-GS −0.9831(6) 0.167(1) −0.051(1) 0.078(2)

exact −0.9838 0.167 −0.051 ??

and common features. These methods have been widely applied to study
lattice models for electron correlations. In addition, they have seen many
applications in high-energy and nuclear physics. The standard auxiliary-
field quantum Monte Carlo methods allow essentially exact calculations of
ground-state and finite-temperature equilibrium properties of interacting
many fermion systems. Their effectiveness, however, is severely limited by
the well-known sign problem, which prevents calculations at large system
sizes and low temperatures.

The recently developed ground-state and finite-temperature constrained
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path Monte Carlo methods allow simulations of fermion systems without
any decay of sign. The elimination of the sign decay is possible by studying
the behavior of the paths in the general space of Slater determinants. In
doing so, we have underlined the common feature of the sign problem under
different forms of quantum Monte Carlo methods. The CPMC methods
are approximate. Benchmark calculations have shown that accurate results
can be obtained with simple choices of B̂T or |ψT 〉. An improved trial
propagator or wave function will lead to improved results.

The CPMC methods make possible calculations under the field-theoretical
formalism whose required computer time scales algebraically, rather than
exponentially, with inverse temperature and system size. With the second-
quantized representation, it complements the fixed-node GFMC method
and the restricted path-integral Monte Carlo method[24] in real space. The
algorithm automatically accounts for particle permutations and allows easy
computations of both diagonal and off-diagonal expectations, as well as
imaginary-time correlations. While much work is needed to study various
forms of B̂T or |ψT 〉, and to understand the subtleties of the methods
because of the non-orthogonal and over-complete nature of the Slater de-
terminant space involved, we expect the method and the concept brought
forth here to see many applications, and to significantly enhance the appli-
cability of quantum simulations in interacting fermion systems.
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Brief review of configuration-space
methods

1 Variational Monte Carlo

This is perhaps the simplest way of performing a quantum Monte Carlo cal-
culation for ground-state properties. It is conceptually different from most
other QMC approaches. Its theoretical basis is the variational principle. A
variational trial wave function |ΨT 〉 is first constructed, which has a set of
parameters that can be varied. One then optimizes these parameters so as
to obtain the lowest possible variational ground-state energy. The only role
Monte Carlo plays is in computing the many-dimensional integrals that are
necessary for the ground-state energy.

We start with writing the trial state |ΨT 〉 in terms of the configurations
of the system

|ΨT 〉 =
∑

R

|R〉〈R|ΨT 〉, (A.1)

where the coefficients 〈R|ΨT 〉 = ΨT (R) depend on the set of variational
parameters pi. Here, |R〉 is a state in configuration space as defined in
Sec. 2.3. For example, forM electrons of the same spin on anN = L×L two-
dimensional square lattice, a configuration could be a state with electrons
on lattice sites [i1, i2, · · · , iM ] such that 1 ≤ ik ≤ N for 1 ≤ k ≤ M and
ik1 6= ik2 for any pair of particle indices k1 6= k2. The variational ground-
state energy in the state |ΨT 〉 can be expressed as

ET =
〈ΨT |Ĥ|ΨT 〉
〈ΨT |ΨT 〉

=

∑

REL(R)〈ΨT |R〉〈R|ΨT 〉
∑

R〈ΨT |R〉〈R|ΨT 〉
, (A.2)

where the local energy in configuration R is defined as

EL(R) =
〈ΨT |Ĥ|R〉
〈ΨT |R〉

. (A.3)

The many-dimensional sum in Eq. (A.2), while in general impossible to
evaluate analytically, is in exactly the form of Eq. (1.7) and can there-
fore be evaluated by Monte Carlo. We can sample the function f(R) =
〈ΨT |R〉〈R|ΨT 〉 = |ΨT (R)|2 by the Metropolis algorithm. Given M inde-
pendent Monte Carlo samples, we evaluate the integral for ET by Eq. (1.9)
and obtain a Monte Carlo estimate, EVMC. In addition, we can easily eval-
uate the statistical error of EVMC: δE = σE/

√
M. The variance of the
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local energy, σE , is defined as

σE =
√

〈E2〉 − 〈E〉2, (A.4)

where 〈E〉 = EV MC and 〈E2〉 =

∑

R
E2

L
(R)

M . It is known[36] that σE , which
has a lower bound of 0, is a better quantity to optimize than EV MC . We
have often used a combination of both quantities as indicators in our search
of variational parameters.

We use the Metropolis algorithm to generate a set of M configurations
distributed according to f(R). The general Metropolis algorithm is re-
viewed briefly in Section 3.1 under the AFQMC algorithm. For a lattice
system such as the two-dimensional Hubbard model, working in configu-
ration space allows some further simplification. For example, the kernel
K for each electron can simply propose a move uniformly to one of its 4
neighboring sites. The acceptance is then given by

A = min

[ |ΨT (Rnew)|2
|ΨT (Rold)|2 , 1

]

, (A.5)

where Rnew and Rold are the new and old configurations, respectively.
Clearly, the move would be rejected if the neighboring site is already occu-
pied by an electron of like spins. For most choices of the trial wave function
|ΨT 〉, which could contain Slater determinants multiplied by two-body (or
higher) correlation functions, the evaluation of Eq. (A.5) is simple becuase
Rnew and Rold differ only by one electron position. The random walk is
repeated sufficient number of steps so that M independent walkers are
obtained.

2 Green’s function Monte Carlo (GFMC)

The basic premise of the GFMC method[8] is the same as that of the
ground-state CPMC method. That is, it involves random walks based on
Eq. (1.2). The random walk formalism utilizes first-quantized representa-
tion and is in configuration space.

For a lattice system such as the Hubbard or t-J model, one starts with
the operator[37]

F̂ ≡ C − Ĥ (A.6)

in place of e−∆τĤ . The operator F̂ can be viewed as a first order expansion
of the latter. But for discrete systems, projection with F̂ leads to the exact
ground-state wave function as well, because the system has a spectrum that
is bounded. In this case, it is often advantageous to use the operator F̂ in
the projection, because of the sparseness of its matrix representation. The
constant C is chosen to ensure that all diagonal elements are positive and
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the spectrum of F̂ is positive. Similar to ground-state AFQMC or CPMC,
if an initial state |Ψ(0)〉 has any overlap with the ground state |Ψ0〉 of Ĥ,
the process

|Ψ(n)〉 = F̂n|Ψ(0)〉 (A.7)

will lead to |Ψ0〉 at large n. The Green’s function Monte Carlo method
realizes the above process by a Monte Carlo random walk in configuration
space.

In order to improve efficiency of the random walk process, one more
mathematical manipulation of Eq. (A.7) is necessary. This is done by in-

troducing an operator
˜̂
F whose matrix elements are related to those of F̂

by a similarity transformation:

˜̂
F (R′, R) ≡ 〈ΨT |R′〉 〈R′|F̂ |R〉 1

〈ΨT |R〉
. (A.8)

The stochastic realization of Eq. (A.7) is actually with
˜̂
F instead of F̂ .

While mathematically equivalent, the use of
˜̂
F can significantly reduce the

fluctuation of the Monte Carlo process if |ΨT 〉 is a reasonable approxi-
mation of |Ψ0〉. As we have seen with the constrained path Monte Carlo
methods, this is the idea of importance sampling.

The program is then to start with a set of walkers distributed accord-
ing to 〈ΨT |R〉〈R|ΨT 〉. This can be accomplished with a variational Monte
Carlo calculation prior to GFMC. The walkers then undergo random walks
in R-space. For each walker, denoted by R, a step in the random walk
means randomly selecting and moving to a new position R′ with probabil-

ity
˜̂
F (R′, R)/

∑

R′

˜̂
F (R′, R). Note that the sparsity in the structure of Ĥ

means that there are only O(N) possible R′’s, whose corresponding proba-

bilities can be computed. Because the overall normalization
∑

R′

˜̂
F (R′, R)

is not a constant, each walker carries a weight which fluctuates, or a branch-
ing scheme is introduced to allow the total number of walkers to fluctuate,
or both.

The ground state energy is given exactly by the so-called mixed estimate

(see Eq. (1.4))

E0 =
〈ΨT |Ĥ|Ψ0〉
〈ΨT |Ψ0〉

=

∑

REL(R)〈ΨT |R〉〈R|Ψ0〉
∑

R〈ΨT |R〉〈R|Ψ0〉
, (A.9)

where EL(R) is defined in Eq. (A.3). After a sufficient number of steps,
the walkers are distributed according to 〈ΨT |R〉〈R|Ψ0〉. E0 can therefore
be computed from such walkers as the (weighted) average of EL(R) with
respect to walker positions R. We denote this Monte Carlo estimate of E0

by EGFMC .
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Expectation values of operators other than Ĥ can also be computed from
the mixed estimate. However, if the operator does not commute with Ĥ,
this estimate is not exact. This is an important distinction which requires
careful analysis of the bias in the results due to |ψT 〉. There exist ways to
improve upon the mixed estimate and to possibly extract exact estimates
of expectation values, but we will not discuss them here. The computation
of off-diagonal expectations in general presents difficulty in GFMC, because
it is difficult to sample two groups of random walkers {R′} and {R} whose
overlap is well behaved statistically to allow for computation of matrix
elements such as 〈Ψ0|R′〉 〈R′|Ô|R〉 〈Ψ0|R〉.

The sign problem occurs in GFMC if the particles are fermions (e.g.,
the Hubbard model) or any of the matrix elements in Eq. (A.8) are neg-
ative (e.g., anti-ferromagnetic coupling of quantum spins). The fixed-node
method eliminates the sign decay by imposing the nodal structure of the
trial wave function |ψT 〉 on the projected wave function. For continuum sys-
tems, such as atoms or molecules, the fixed-node approximation is straight-
forward to implement[21, 22]. One would simply modify the transition prob-
ability in Eq. (A.8), setting all negative matrix elements to zero. At the
limit of ∆τ → 0, this ensures that the random walk process solves the
Schrödinger equation under the boundary condition that ΨFN

0 (R) = 0 for
all configurations R that satisfy ΨT (R) = 0, where |ΨFN

0 〉 is then the ap-
proximate solution for |Ψ0〉 under the fixed-node approximation.

For discrete systems, however, the implementation of the fixed-node ap-
proximation is more subtle. Unlike in continuum systems, the random walk
does not become continuous at the limit of ∆τ → 0. A method was de-
veloped a few years ago[23] which successfully generalized the continuum
fixed-node approximation to lattice fermion systems. In addition to setting
the transition probability to zero when the matrix element is negative in

Eq. (A.8), one also modifies diagonal matrix elements
˜̂
F (R,R) when the

corresponding configuration R is in the vicinity of the node defined by |ΨT 〉.
R is in the vicinity of the trial node if there exists at least one negative
˜̂
F (R′, R), i.e., at least one “hop” which would take the walker across the
trial node. For each such configuration R, an extra part is added to the
diagonal matrix element. The extra part serves as an effective potential. It

is defined as
∑−

R′

˜̂
F (R′, R), where the negative sign means that the sum is

only over those configurations R′ that lead to negative elements
˜̂
F (R′, R).

The idea of this effective potential is in fact related to the discussion in the
first part of Section 4.5.
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