Pulsed Laser Deposition with the Thomas Jefferson National Accelerator Facility Free Electron Laser: Benefits of Sub-Picosecond Pulses with High Repetition Rate

Anne Reilly¹, Chris Allmond^{1,} Jason Gammon¹, Shannon Watson¹, Jung Gi Kim² and Michelle Shinn³

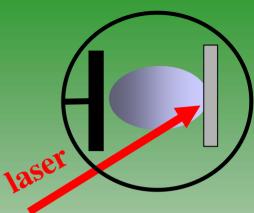
¹ Department of Physics, College of William and Mary
²Department of Physics, Hanyang University, Korea
³Thomas Jefferson National Accelerator Facility

Work supported by the Jeffress Memorial Trust and NSF grant DMR-9973697

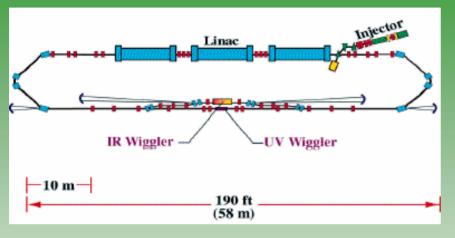
Summary

The TJNAF-FEL presents unique opportunities in PLD with sub-picosecond pulses, high average power, high repetition rate and tunability.

Plumes dominated by blackbody radiationProduces good films with high deposition rates


Why pulsed laser ablation and deposition with the FEL?

Advantages of PLD:


- FLEXIBLE
- GREATER CONTROL OVER ENVIRONMENT
- COMPLEX ALLOYING (High Tc superconductors)
- EPITAXY AT LOW TEMPERATURE

Currently, PLD is limited due to lack of understanding of fundamental processes of laser-target and laser-plasma interactions. Laser sources have been limited.

TJNAF- FEL Unique *combination of parameters*

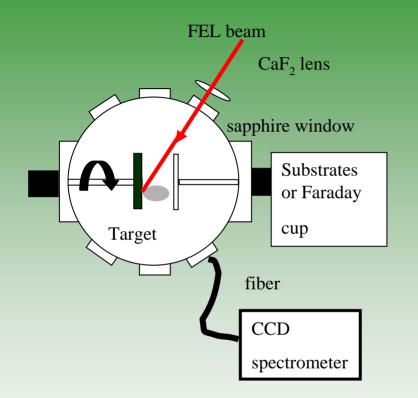
The College of

WILLIAM & MARY

ULTRAFAST (650 fs) HIGH POWER (>2 kW, 100 μJ/pulse) TUNABLE (1-6 μm, THz and UV upgrade) HIGH REPETITION RATE (18, 34, 74 MHz) CW or Pulsed Operation

Why PLD with the FEL?

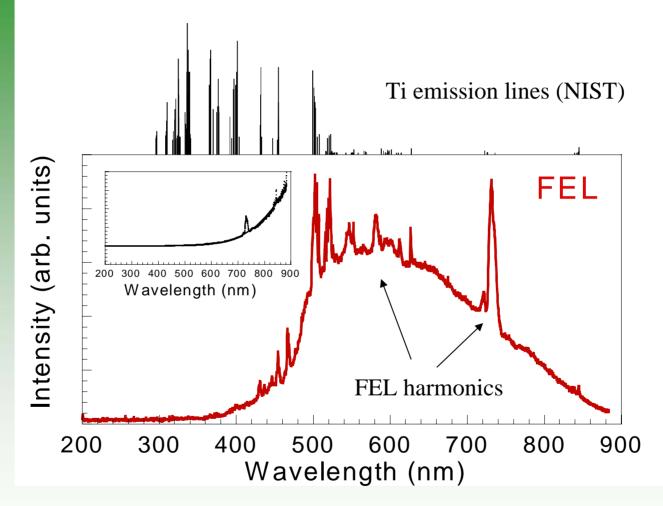
Benefits:


• **ULTRAFAST**: Lower ablation threshold, less target damage, eliminates particulate problem

Gamaly et al., Physics of Plasmas, 9 949 (2002)

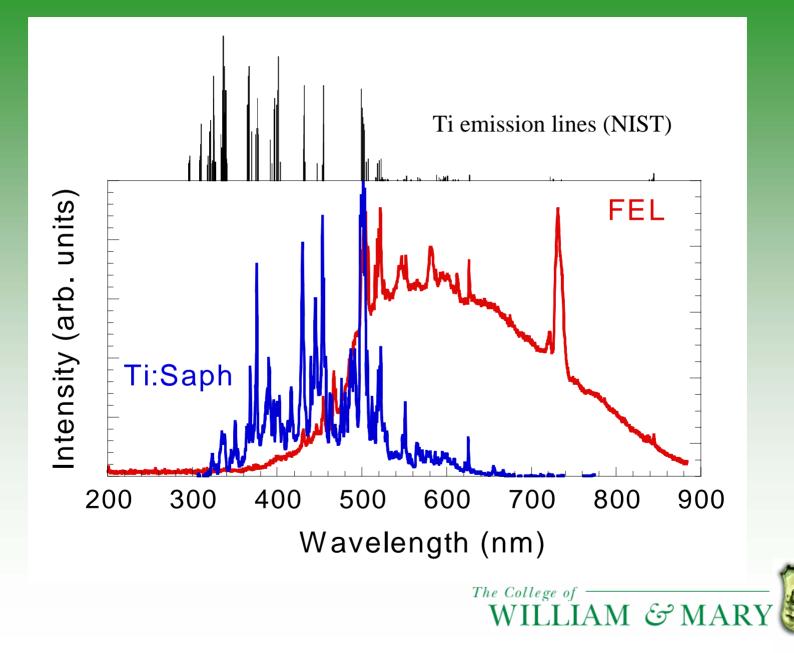
- **HIGH REPETITION RATE**: High deposition rate Gamaly *et al.*, J. Appl. Phys., **85** 4213 (1999)
- **TUNABLE**: Enhanced ablation/deposition with resonant absorption Park and Haglund, Appl. Phys. A, **64** 431 (1997)
 D. M. Bubb *et al.*, Appl. Phys. Lett, **7**9 2847 (2002)

FEL-PLD experimental setup


8" Chamber, 1 x 10⁻⁶ Torr FEL at 3.1 μ m

FEL plasma plume Nb target, cw beam, ~ 0.6 J/cm²

Optical spectra shows significant blackbody emission:



Titanium target

Red curve uncorrected response

Compared with amplified Ti:Saph ablation (1 mJ/pulse, 1 kHz):

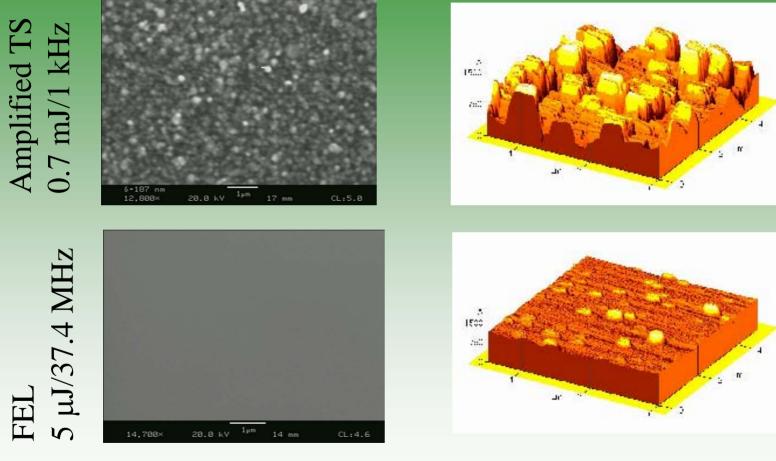
Blackbody radiation with FEL ablation:

Dense Plasma?

G. Mehlman et al., J. Appl. Phys., 74 53 (1993)

Heating of nanoparticles?

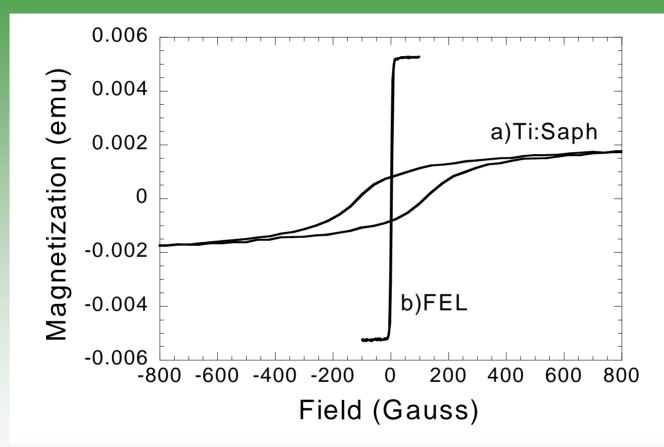
D. B. Geohegan et al., Appl. Phys. Lett., 62 1463 (1993)


Thin Film Quality (Magnetic Materials)

Benefit of sub-picosecond pulses and high repetition rate: high quality films with high deposition rates

Demonstrated in comparison to amplified Ti:Sapphire system (150 fs, 1 mJ/pulse, 1 kHz)

Amplified Ti:Sapphire versus FEL (NiFe) Exploring dependence on pulse power and repetition rate


AFM

SEM

Amplified Ti:Sapphire versus FEL (NiFe)

Large effect on magnetic properties

Crystallized Fe? Crystalline orientation? Roughness?

The College of

Amplified Ti:Sapphire versus FEL (NiFe)

Deposition Rates

Amp. Ti:Saph 1 mJ/pulse, 1 kHz 1 Å/s 1x10⁻³ Å /pulse

FEL

5 μJ/pulse, 37.4 MHz 17 Å/s 5x10⁻⁷ Å /pulse

Possibility of much higher rates with FEL: 200 Å/s for Nb M. Shinn, Proc. SPIE (2000)

Conclusions

- The TJNAF-FEL gives a unique combination of laser parameters
- Interesting opportunities to explore lasertarget and laser-plasma interactions
- FEL-PLD gives high quality films with very high deposition rates

