

P e n d u l u m +

Team Riddler:
Technical
Manual

Pendulum +

Electronics Project

December 2019

Do you suspect deep down that your students are struggling to understand natural

frequencies?

Is engineering in general really dodging balls at them?

Introducing P e n d u l u m +
...the first-ever teaching aid device that adjusts the string length to change natural

frequency and achieve resonance!

Buy now, and let this pendulum motivate failing students to learn by doing!

1 (800) 736 - 3858

Our Story
At Pendulum +, we were not satisfied with your average ball and rope for teaching students about natural
frequencies. We desired to mechanically drive a pendulum with adjustable lengths to vary the natural
frequency. This goal oscillates a mass at different user selected frequencies to the highest accuracy. We
strove to better illustrate how resonance, and natural frequencies in pendulums are dictated to students.
The pendulum was built to run simply so students could easily understand how it functions. The DC
motor driving the oscillations is based on simple solid body rotations. Changes in height are found with
the rotation of a wheel at a specified radian amount. Our teaching aid helps better explain this key physics
concept allowing for better learning and understandability. We even included a sensor to calculate the
deviation from the set frequency and then adjust to get as close as possible to the selected frequency.

We engineered the frame from sturdy and light aluminum beams with predrilled holes for easy assembly,
corrosion resistant, and aerospace quality durability. The sliding mechanism features precision milled and
fitted ball bearings for smooth, low friction operation. The pendulum hangs on sturdy 3D printed parts
connected to a servo for a customized frequency operational range. Fishing line comprises the string
holding the mass for easy repairability and near massless performance.

For easy operation a Raspberry Pi 4 acts as the brains. A python code was developed to efficiently control
the driving force, height, and adjust for error. As a ready to run, plug and play, unit no 00co00ding
experience is needed to operate our pendulum.

We hope you enjoy the optional frequency changes, electronics, and fun factor of our pendulum, For
students who struggle with physics we heavily recommend this necessary tool that can teach engineering,
electronics, and how pendulums function.

USER'S MANUAL

TABLE OF CONTENTS

pg. 5: General Design Overview and Description

pg. 9: Design Specs

pg 11: Tutorial
pg 11: Intended Use
pg 11: Installation Instructions
pg 11: Operational Procedures
pg 11: Troubleshooting
pg 12: Safety Warnings
pg 12: Maintenance Information

pg 14: Appendix
pg 14: Team Members & Roles
pg 15: Features & Accessories
pg 16: Components
pg 19: CAD Drawings
pg 20: Circuit Diagrams
pg 29: Finding Duty Cycle to Frequency Conversion
pg 30: Software Programs

User’s Manual
Page 4

General Design Overview and Description

The logic behind Pendulum+ stems from the following equation for a pendulum’s natural
frequency where g is the gravity of 9.81, and l is the length of the pendulum string.

 ω0 =√ l
g (1)

In describing to an average student how we arrive at the equation above, we start by considering
the mass m suspended from a string of length l . A simple pendulum is a machine that lets the
mass swing freely from side to side within a vertical plane. In Figure 1, is the angle of the string
counterclockwise from the vertical. The second derivative of , , is the variable that is θ

dt2
d θ2

subject to the angular motion of the pendulum where I is the moment of inertia of the mass and

 is the torque acting on the system. Mathematically, τ

 I ·
dt2
d θ2

= τ (2)

Figure 1. Setup diagram of the simple pendulum from

http://farside.ph.utexas.edu/teaching/301/lectures/node140.html

Since the mass m is situated at a distance l from the axis of rotation attached to the center of the
fixed support (i.e., pivot point), the moment of inertia would be,

lI = m 2 (3)

The main forces that are acting on the mass are the gravitational force mg and the tension T . The
line of action of mg passes the distance l sin from the pivot point. Since the magnitude of mg · θ
is downward, it will be negative, and the magnitude of shall be, τ

gl inθ τ = − m · s (4)

Substituting I and into Equation (2) gives us, τ

User’s Manual
Page 5

http://farside.ph.utexas.edu/teaching/301/lectures/node140.html

 ml 2 · gl inθ
dt2
d θ2

= − m · s

 l inθ ·
dt2
d θ2

= − g · s (5)

Assume the relatively smallest deviation from the equilibrium state of . If , we can θ < 6 ∘
approximate that,

inθ s ≃ θ (6)

Substituting sin into Equation (5) gives us the following equation for simple harmonic motion θ
of the simple pendulum,

l ·
dt2
d θ2

= − g · θ (7)

Equation (7) is a reference to Newton’s second law of motion, which via Hooke’s law provides
the restoring force f and force constant k of the spring. Mathematically,

x f = − k

xm ·
dt2
d x2

= − k (8)

You may find it helpful to know the following steady-state solutions to Equation (8), where a, ω
, and are constants when ϕ

os(ωt) x = a · c −ϕ (9)

a os(ωt)
dt2
d x2

= − ω2 · c −ϕ (10)

Substituting Equations (9) and (10) into Equation (8) will give us the angular equation for simple
harmonic motion.

 ω a os(ωt) a os(ωt) − m 2 · c −ϕ = − k · c −ϕ

ω km 2 =

 ω2 =√ k
m (11)

Referring back to Equation (7), we can suggest that its solutions shall be the following:

os(ωt) θ = a · c −ϕ (12)

a os(ωt)
dt2
d θ2

= − ω0
2 · c −ϕ (13)

Substituting Equations (12) and (13) into Equation (7) will give us the angular natural frequency
of small amplitude oscillations of a single pendulum, which is essentially Equation (1). Note that
this frequency depends on the length and gravity of the pendulum, and it is independent of the
mass and swing amplitude.

ω a os(ωt) os(ωt) − l 0
2 · c −ϕ = − g · a · c −ϕ

User’s Manual
Page 6

 lω g 0
2 =

 ω0 =√ l
g

In addition to the natural frequency, the servo motor wheel can change the length of the string.
Determining the new length derives from a mathematical concept of arc length. In Figure 2, is θ
the angle of rotation in radians and r is the radius of the wheel. To determine arc length s, we use
the following,

 s r = θ (14)

Figure 2. Arc circle diagram from

https://www.dummies.com/education/math/calculus/how-to-determine-the-length-of-an-arc/

It is helpful to note that unwinding the string decreases whereas winding it back increases . θ θ
Assuming that s is the string wrapped around the servo wheel, we can add s to the previous length of L1
the hanging string to determine a new string length That is, .L2

 L r 2 = L1 + θ (15)

Figure 3. Improved diagram for servo wheel rotation

To learn more, visit the following websites:

1. The simple pendulum, The University of Texas at Austin:
http://farside.ph.utexas.edu/teaching/301/lectures/node140.html

User’s Manual
Page 7

https://www.dummies.com/education/math/calculus/how-to-determine-the-length-of-an-arc/
http://farside.ph.utexas.edu/teaching/301/lectures/node140.html

2. Simple harmonic motion, The University of Texas at Austin:
http://farside.ph.utexas.edu/teaching/301/lectures/node138.html#eshm

3. Measurement of angles, Dave’s Short Trig Course, Clark University:
https://www2.clarku.edu/faculty/djoyce/trig/

User’s Manual
Page 8

http://farside.ph.utexas.edu/teaching/301/lectures/node138.html#eshm
https://www2.clarku.edu/faculty/djoyce/trig/

Design Specs

Aesthetics Sleek, Sturdy, and
Functional

The stand and control box
of the product are made
from aluminum alloy. The
design is compact and
contains no unnecessary
components, meaning it is
easy to use and will stand
the test of time.

Target Audience Students: Middle school
through college

Pendulum + is intended for
students learning about
simple harmonic motion.

Function To drive a pendulum at a
range of frequencies
(0.91-1.06 Hz)

The Pendulum + product is
an electrically driven
pendulum that can operate
at a range of
predetermined
frequencies.

Materials Stepper Motor, Servo
Motor, Raspberry Pi 4, and
Aluminum Stand

These are the main
components necessary to
create the framework for a
driven pendulum. These
are supplemented by other
electrical components such
as voltage amplifiers and
MOSFET circuits.

Size and Weight Requires a surface area of
45 cubic centimeters for
safe use. Weighs 5 kg.

The Pendulum + product
with the stand and control
box weighs no more than 5
kg and should occupy a
space large enough that
the pendulum and swing
freely with no obstruction.

Installation No Installation The product comes pre
assembled and only
requires a source of
electricity to run

User’s Manual
Page 9

Maintenance Minimal Pendulum + should not be
left plugged in for longer
than 2 hours at a time.
Make sure the string is
untangled before using the
product.

User’s Manual
Page 10

Tutorial

Intended use

Frequency matching and selection of a swinging mass:

See online video for step by step operation of Pendulum+

Installation instructions

● The product ships ready to operate. The frame, motors, and electronics are

pre-assembled for out of the box operation.

● No installation is required.

Operational Procedure

When first opening the product, make sure all components are accounted for and

visibly unbroken. To begin, place the pendulum stand on a solid and flat surface. Put the

control box containing the Raspberry Pi next to the pendulum stand and plug it into a

power source, such as a wall outlet. Once the controller is on, the screen will prompt the

user for frequency within a certain range. Once you have inputted the desired frequency

the pendulum will start to swing. The pendulum will continue to operate until you cancel

the motion by pressing the ‘Stop’ button on the control box or you input a new

frequency.

Troubleshooting

● The control box can become overloaded under heavy operation and fail to react

to inputs, user controls, or clearing the pins. In the event of wacky operation,

User’s Manual
Page 11

failure of the controller to adjust the servo motor, lack of adjustment to frequency

inputs, or freezing turn the control box off and unplug it. Allow the control box to

cool for an hour until it is no longer hot to the touch. At this point plug the control

box back in and restart the program.

● In the event that the cool off does not work, please call customer support.

Safety warnings

● Use product on a flat surface with minimal vibrations to limit interference while in

operation

● Both the stand and control-box contain electronic components, keep away from
fluids and other sources of electricity.

● The pendulum contains a swinging mass that could impact nearby objects or
people, keep away from fragile objects and young children.

● Do not touch electronic components while in operations to avoid short circuits or

shock

● The pendulum is a choking hazard for children under 3 years of age.

● String may become tangled and can strangulate small children or animals.

Maintenance information

● Repair information

○ If your Pendulum + has stopped working please call our customer support

before attempting to take apart the product.

● Information on disposal of the product and packaging

User’s Manual
Page 12

○ Please recycle all packaging components that are not included with the

stand or control box. If the whole product no longer works please follow

local laws to safely dispose of the electronic components, which include

both motors and the control box.

● Index

● Glossary

● Warranty information

○ Pendulum + has a 2 year warranty when the product is purchased. If an

accident occurs which causes the pendulum to stop working, or the

product simply fails to operate, the Pendulum + will be replaced with no

extra charge to the customer. If the product is taken apart or tampered

with, the warranty is voided and cannot be replaced.

● Contact details

○ Customer service is available 24/7 at 1 (800) 736 - 3858

User’s Manual
Page 13

Appendix

● Bennett Atwater: Acted as team leader to ensure the proper distribution of

work and its accomplishment. Designed Fusion360 models for 3D printing.

Handled code for interfacing Raspberry Pi with sensors. Compiled Python

code for running the apparatus into a singular file. Acted as key coding

reference for Team Riddler. Wired sensor circuitry.

● Giles Corzine: Built the aluminum stand for the pendulum and helped

attach components of the project to said frame. Wired the non-inverting

amplifier for the servo motor. Contributed to the tutorial and appendix

sections for the user manual. Filmed and created the video highlighting the

construction process of the project.

● Martha Gizaw: Debugged the Python code for the duty cycles and

frequencies to observe changes in the pendulum string length and swing

motion. Tested and delivered the string and other small-scale materials for

constructing the pendulum. Co-performed a material cost analysis for each

electronic component installed in the product. Determined how to best arrive

at the appropriate formulas and solutions for running the pendulum. Ensured

that the product, manual, and promotional materials are of satisfactory

quality and are meeting their standards before going into the market.

User’s Manual
Page 14

● Daniel Slyepichev: Optimized height of pendulum. Acquired data for the

natural frequency of a pendulum given its length. Arranged method for

matching the frequency of the pendulum to the DC motor’s duty cycle

rotation rate. Assisted with mathematical code design. Created frequency

graphs and circuit diagrams.

● Jacob Wacht: Worked on designing, manufacturing, and testing the

Pendulum. Modeled Pendulum prototypes in Fusion 360, 3-D printed, and

selected designs. Designed and built the DC motor drive circuit and servo

motor to work with the Pi. Worked with the group to code the Pi to run both

the Servo and DC motor at the same time while adjusting to the user

inputted frequency. Coded to find the actual frequency the Pendulum was

operating at and output the value to the user.

Features/accessories

● Unique design components

○ Dual motor action combining a DC motor for oscillations and

stepper motor with PWM controls for changes in height to achieve

maximum available natural frequencies of a pendulum and driving

motion

○ Sturdy frame

■ light, adjustable aluminum rails

○ Smooth action

○ Error feedback and pendulum tracking

User’s Manual
Page 15

■ acoustic sensor

○ Adjusting to the error for accuracy and precision

Components

● Assemblies

○ Frame/stand

○ Rail system

■ accomplish smooth oscillations back and forth

● Individual components

○ Raspberry Pi 4

■ Controls all electronics, motors, and user interface

■ $45

○ High torque servo motor

■ Controls the height of the hanging mass

■ Hitec HS-645MG High-Torque 2BB Metal Gear Servo

■ $29.99

● Vendor: Tower Hobbies

(https://www.towerhobbies.com/cgi-bin/wti0001p?I=H

RCM0927)

○ DC motor

■ Provides the driving force with a piston like motion

■ LMioEtool DC Gear Motor, High Torque Reversible Electric

Geared Motor - with Eccentric Output Shaft Gearbox

(12V/87RPM)

User’s Manual
Page 16

https://www.towerhobbies.com/cgi-bin/wti0001p?I=HRCM0927
https://www.towerhobbies.com/cgi-bin/wti0001p?I=HRCM0927

● Source (amazon.com)

■ $13.99

○ Thin Synthetic String

■ Holds the mass and act as a massless string for better

results

■ ~$0.50

○ Hanging Mass

■ Swing back and forth like a pendulum

■ 3D printed (cite design in appendix)

■ ~$1.50

○ Acoustic sensor

■ Measure the actual frequency of the pendulum and adjust for

error

■ HC-SR04 Ultrasonic Range Finder

■ $2.99

○ frame components

■ 2x 12 inch actobotics aluminum rails ($9.99 each)

■ 2x 15 inch actobotics aluminum rails ($11.99 each)

■ 1x 9 inch actobotics aluminum rail ($7.99)

■ actobotics channel A bracket ($4.99)

■ Hub mount B 90 degrees ($4.49)

■ Dual channel flat bracket ($1.49)

■ Dual channel 90 degrees

■ Misc hardware ($6)

User’s Manual
Page 17

■ Source for frame components: SparkFun

(https://www.sparkfun.com/pages/Actobotics)

User’s Manual
Page 18

https://www.sparkfun.com/pages/Actobotics

CAD drawings

Iteration 1:

Iteration 1 included a cart oscillated on rails by two motors on the frame. The pendulum was suspended
from the cart and would swing through the central hole.

User’s Manual
Page 19

Iteration 2: (include images of the final design)
The second iteration involved scrapping the most of the 3-D printed components for prefab aluminum
frame pieces and a sliding rail assembly.

Circuit diagrams:

Servo Control Circuit:

5v are input to the servo and it is grounded. Motion is controlled by the GPIO pin 13 from the Pi. A
specific PWM signal is sent that tells the servo motor how far to rotate. The Servo is sensitive to 15
degree changes.

User’s Manual
Page 20

Pendulum Timing Control:

An acoustic sensor is wired to the Pi to record changes is distance at a set trigger rate. The changes in
distance are filtered within the program to find the average experimental frequency.

DC motor control:

The Signal from the Pi is amplified by an op amp up to 5 volts for the MOSFET to allow current to be
amplified and flow through the motor allowing for motor rotation. A PWM signal is sent at different pulse
widths to allow the motor to run for different lengths resulting in a different rotational frequency hence
driving frequency.

User’s Manual
Page 21

Pendulum Height changing Wheel:

User’s Manual
Page 22

Rotating Wheel powered by DC Motor:

User’s Manual
Page 23

Acoustic sensor box:

User’s Manual
Page 24

Pendulum:

User’s Manual
Page 25

Blue- Servo and Height unit on reduced friction rail
Red- motor control unit
Green- Pi
Orange- Frequency detection unit
Purple- DC motor assembly with solid body rotation oscillator

Servo Motor with String and Spool

User’s Manual
Page 26

DC and Servo Motor Control Circuit

Raspberry Pi 4

User’s Manual
Page 27

Frequency Detection Acoustic Sensor

DC Motor with rotating Wheel and Arm

User’s Manual
Page 28

Finding Duty Cycle to Frequency Conversion

Motors usually operate under duty cycle conditions to change the rotation rate.

However, each motor is teched differently, so one must undergo experiment to find the

specific conversion rotation rate. This task can be done multiple ways using many

sensor techniques, but for this pendulum, the team utilized the photodiode. The

photodiode increases its voltage output in the presence of more photons, as it converts

it to electrical energy. A solid wheel with a small hole can be attached to the given

motor, and a small circuit setup of an order of the voltage source, photodiode, resistor

and ground connection may be used to find the rotation frequency with the help of an

oscilloscope. One places this circuit on one side of the wheel with an oscilloscope

probing the resistor. One must make sure that the hole passes the photodiode once per

cycle. The other side of the motor’s wheel has a strong light source, which will be used

to ping the photodiode. After activating a low DC to the motor, one measures the

frequency of pings shown in the oscilloscope. Repeat the process for multiple DC

signals to find a curve of given duty cycles and rotation rates, which results in a curve

shown below. The curve below is for the team’s specific motor.

User’s Manual
Page 29

This curve is then interpolated within the code to determine the necessary PWM

signal to drive the pendulum at the chosen frequency.

Software Programs

GPIO_PWM_servo_dc_finalproject_v4_FINALCODE.py

import time
import RPi.GPIO as GPIO
import numpy as np
import math as m
import matplotlib.pyplot as plt
#!!!
startL=.23 #meters
#!!!1
#interpolating the points to be chosen
DCmade=np.zeros(16)
for i in range(0,16):
 DCmade[i]=20+5*i

Freq=[.942 ,1.088, 1.137, 1.192, 1.232, 1.283, 1.301, 1.328, 1.34, 1.348,
1.359, 1.371, 1.389,
 1.395, 1.406, 1.414]
points=np.linspace(20,95,300)

Finterp=np.interp(points,DCmade,Freq)
mindc=np.zeros(300)

User’s Manual
Page 30

#!!!1
#servo setup
GPIO.setmode(GPIO.BCM)
GPIO.setup(12, GPIO.OUT)
PWMControlservo = GPIO.PWM(12,50)
PWMControlservo.start(0)
dc=4 #tuned for the motor 7.5= 90 degree rotation
rotate=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
#change in length
#on a circle theta*r=arc length=dl
#15 degres per integer 1=15,2=30.....
#delta theta= 15*pi/180 = angle in degrees
#dl= delta theta* number along servo
r=0.025 #radius of wheel in meters
theta=15*m.pi/180 #angle of rotation
#create array of actual lengths
Length=np.zeros(12)
for i in range(0,len(Length)):
 Length[i]=.23+theta*r*i
print('length',Length)

print(rotate)
#!!!1
#dc driver setup
#warnings.filterwarnings("ignore")
GPIO.setmode(GPIO.BCM)
GPIO.setup(13, GPIO.OUT)
PWMControl = GPIO.PWM(13,60)
PWMControl.start(0)
GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)
GPIO.setup(27, GPIO.IN)
#!!
#best fit equations
def distance(tbegin):
 GPIO.output(18,1)
 StartTime=time.time()
 StopTime=time.time()
 while GPIO.input(27)==0:
 StartTime=time.time()
 while GPIO.input(27)==1:
 StopTime=time.time()
 dt=(StopTime*10**(6))-(StartTime*10**(6))
 while dt<70:
 while GPIO.input(27)==0:
 StartTime=time.time()
 while GPIO.input(27)==1:

User’s Manual
Page 31

 StopTime=time.time()
 dt=(StopTime*10**(6))-(StartTime*10**(6))
 GPIO.output(18,0)
 print(dt)
 timestamp=StopTime-tbegin
 distance=dt/58
 return distance, timestamp
#!!
#input your desired frequency from blank to blank
while(1):
 tbegin=time.time()
 dis=[]
 times=[]
 DESFREQ= input('What Freqency do you want betweeen .91 and 1.06 (Hz)')
 DESFREQ= float(DESFREQ)
 DESFREQrad= (2*m.pi*DESFREQ)**2
 # choosing the proper length first
 #freq=sqrt(g/l)
 #G/FREQ^2=L
 newL= 9.81/DESFREQrad
 print('newL',newL)
 while (DESFREQ>1.06 or DESFREQ<.91):
 DESFREQ= input('TOO LONG BRO. What Freqency do you want betweeen
.91 and 1.06 (Hz)')
 DESFREQ= float(DESFREQ)
 # choosing the proper length first
 #freq=sqrt(g/l)
 #G/FREQ^2=L
 newL= 9.81/DESFREQ;
 print("newL: ",newL)

 deltaL=startL-newL
 #solve for rotate
 #dl=r*theta*rotate[i]
 #Rotateangle= deltaL/(r*theta);
 #starting from the max length at postion 1:
 #rotate=np.array([1,2,3,4,5,6,7,8,9,10,11,12])
 #15 degree increments moving to shorten the length
 #1=longest
 #transfer rotate into degreees
 #rotdegree=[0,15,30,45,60,75,90,105,120,135,150,165,180]
 #rotdegree=15*rotate

 value=newL
 #find the nearest value
 findnearest=np.zeros(12)
 for i in range(0,len(rotate)):

User’s Manual
Page 32

 findnearest[i]= abs(Length[i]-value) #abs since getting smalling
 print('findnearest',findnearest)

 minarray=np.amin(findnearest)

 minarray=np.where(findnearest == minarray)

 minarray=minarray[0]
 minarray=minarray[0]
 print('min array',minarray)
 actualrotate=rotate[minarray]
 print(actualrotate)
 # we have set the new length for the desired natural frequency
 #keep track of the nrew length to make it the start length
 if deltaL > 0 :
 startL = newL
 #set the driving frequency
 #find the closest to our interpolation

 for i in range(0,300):
 mindc[i]=abs(Finterp[i]-DESFREQ)
 minDCval=np.amin(mindc)
 minDCvalINDEX=np.where(mindc == minDCval)
 dc=points[minDCvalINDEX]
 print('DCin', dc)

 #selecting the drivng frequency
 #!!!
 #run the loop
 #while(DESFREQ!=Freq):
 #Will need to create a loop comparing our measured frequency to
desiredfrequency
 #PWMControl.start(0)
 try:
 stop="n"
 while(stop!="y"):
 PWMControlservo.ChangeDutyCycle(actualrotate)
 time.sleep(2)
 PWMControl.ChangeDutyCycle(dc)
 print("assessing motion")
 time.sleep(5)
 n=0
 while n<100:
 n+=1
 dist,tmoney=distance(tbegin)
 dis.append(dist)
 times.append(tmoney)

User’s Manual
Page 33

 print("measured distance= ", dist)
 print("Measurement Stopped. Exit graph to continue.")
 #plt.scatter(times,dis)
 #plt.show()
 #finding the min of times to cut values
 minvalsensor=np.amin(dis)
 #determine the cut
 cut=minvalsensor+10
 #cut the values
 bf=[]
 bft=[]
 for i in range(0,len(times)):
 if dis[i] <= cut:
 bf.append(dis[i])
 bft.append(times[i])
 #print(bf)
 #print('uncut',bft)
 bftc=[]
 for i in range(0,len(bft)-1):
 if abs(bft[i]-bft[i+1]) >.4:
 bftc.append(bft[i])
 #calc the frequency
 period=[]
 for i in range(0,len(bftc)-1):
 period.append(abs(bftc[i]-bftc[i+1]))
 averageperiod=2*np.mean(period)
 #mult by 2 since measure half oscilation
 print('frequency Calculated', 1/(averageperiod))

 PWMControl.stop()
 stop=input("Do you want to do a new frequency? (y/n)")

 #run dc motor

 except KeyboardInterrupt:
 break
PWMControl.stop()
GPIO.cleanup()

#Need to:
#- Write code in terms soley of newL. This will no allow for negative
values.

User’s Manual
Page 34

#- if change is 15 degrees, length change is

Code Flow Chart:

User’s Manual
Page 35

servofunc1.py

-*- coding: utf-8 -*-
"""
Created on Sat Nov 30 16:31:11 2019

@author: Bennett value= 9.81/DESFREQ;

"""
import numpy as np

def servo_set(length, interpolatedata, points):
 """ Taking input frequency """

 DESFREQ= float(input('What Freqency do you want betweeen .91 and 1.06
(Hz)? I will get as close as possible.'))
 value=9.81/DESFREQ
 while(DESFREQ>1.06 or DESFREQ<.91):

 DESFREQ= float(input('NOT IN RANGE \n What Freqency do you want
betweeen .91 and 1.06 (Hz)? '))
 # choosing the proper length first
 #freq=sqrt(g/l)
 #G/FREQ^2=L
 value= 9.81/DESFREQ;
 print("newL: ",value)
 rotate=[i for i in range(1,len(length)+1)]
 rotdegree=[15*i for i in range(0,len(length)+1)]
 print(rotdegree)
 findnearest=np.zeros(12)
 for i in range(0,len(rotate)):
 findnearest[i]= length[i]-value
 #finding the absolute distance from 0 for the findnearest.
 #want the length closest to 0 meters
 for i in range(len(findnearest)):
 if findnearest[i]<0:
 findnearest[i]=-findnearest[i]
 print(findnearest)
 minarray=np.amin(findnearest)
 actualrotate=rotate[np.where(findnearest==minarray)[0][0]]
 print(actualrotate)

 """ Handling interpolation """
 mindc=np.zeros(300)
 for i in range(0,300):
 mindc[i]=abs(interpolatedata[i]-DESFREQ)
 minDCval=np.amin(mindc)
 minDCvalINDEX=np.where(mindc == minDCval)
 dc=points[minDCvalINDEX]

 """ Return calculated values """

User’s Manual
Page 36

 print('DCin', dc)
 print('rotate', actualrotate)
 return dc, actualrotate

User’s Manual
Page 37

