
Chapter 7

Momentum and Collisions

Name: Lab Partner: Section:

7.1 Purpose

In this experiment, the conservation of linear momentum will be investigated. The applica-
tion of momentum conservation to different types of collisions will be explored.

7.2 Introduction

Momentum, ~p, is the product of mass and velocity

~p = m~v (7.1)

Since velocity is a vector quantity, momentum is also a vector.
The total linear momentum in an isolated system always remains constant. A system is

isolated in the sense that it doesn’t interact with the rest of the world. Consider a group
(system) of objects. Clearly if an external force acts on the objects, there is an acceleration,
the velocity changes and thus the momentum changes. If only internal forces between the
objects act, there is no net external force and the momentum of the system (group of
particles) as a whole can not change. If no external forces act on a system of particles, the
law of linear momentum conservation can be stated as:

• The total linear momentum of an isolated system remains constant (is conserved) if
there are no external forces acting on the system.

This can be stated in mathematical form as:

~pf = ~pi (7.2)
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Figure 7.1: Schematic diagram of a totally inelastic collision.

where ~pf is the final momentum of the whole system and ~pi is the initial momentum of the
whole system. Note that this is a vector equation. In Cartesian components (x-y), the x and
y components are each conserved separately.

If two objects collide, momentum is conserved during the collision. However, we can
further classify collisions depending on what happens to the kinetic energy (1

2
mv2) of the

particles during the collision. Collisions can be classified as:

• An elastic collision is one in which the total kinetic energy is the same before and
after the collision.

• An inelastic collision is a collision where total kinetic energy is not the same before
and after the collision. If the objects stick together the collision is ’totally inelastic’.

The simplest of the collision situations to analyze is the totally inelastic case. m1 enters
from the left along the x axis with velocity ~v1 and strikes the target particle, m2, at the origin.
The target particle, m2 is at rest. See Figure 7.1. After the collision, the two particles stick
together into a single object of mass m1 + m2. The final velocity of m1 + m2 is ~vf . The
final velocity, ~vf must be along the x axis because of momentum conservation. The incoming
momentum (m1 ·~v1) is all along the x axis i.e. there is no initial y component of momentum.
Since momentum is conserved as a vector, there can be no component of the final momentum
along the y axis.

Since the total momentum is conserved:

m1v1 = (m1 +m2)vf (7.3)

and

vf =
m1v1

m1 +m2

(7.4)

The fractional kinetic energy loss, ∆KE
KE

is:
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Figure 7.2: Schematic diagram of an elastic collision.
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If vf is substituted from equation 7.4 into this equation, the result is:
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(7.6)

This fractional kinetic energy loss is a measure of the in-elasticity of the collision.
An elastic collision requires more analysis, because of the outgoing particles can have

different velocities which are not confined to the x axis. In an elastic collision, m1 enters
from the left traveling along the x axis as shown in figure 7.2. The second ’target mass’, m2

is stationary at the origin. After the collision, m1 moves off with a velocity of ~v1f in the first
quadrant and m2 moves off with a velocity of ~v2f in the fourth quadrant. Each final velocity
can have both x and y components. From conservation of momentum in the y direction we
have:

m1v1fsinθ1 = −m2v2fsinθ2 (7.7)

In the x direction we have:

m1v1i = m1v1fcosθ1 +m2v2fcosθ2 (7.8)

Since the collision is elastic, the total kinetic energy is conserved:
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2f (7.9)
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Figure 7.3: The air table with various components used in the experiment.

In addition to equations 7.7, 7.8, and 7.9, the components of the final velocities are related
to the angles by:

θ1 = tan−1(
v1fy

v1fx
) (7.10)

and a similar equation for particle 2.

7.3 Procedure

An air table is used in this experiment. See Figure 7.3. Each puck is connected by a rubber
hose to an air supply. The pucks ’float’ on a cushion of air which significantly reduces friction.
Inside of the rubber tube is a small flexible conductor which is connected to a spark timer. A
high voltage pulse at regular time intervals (20 times per second or 20 Hz) causes a spark to
burn a small hole in a piece of paper below the puck. Velcro can be placed around the pucks
to cause them to stick together for an totally inelastic collision. Some of the pucks have
magnets so they repel each other which makes an elastic collision situation. Lead collars can
be placed on the pucks for collisions between unequal masses.

Special Cautions:

• Do not touch the pucks or table when the spark timer is on.

• Be careful when removing the puck from the rubber hose to weigh the

puck. Make sure the copper conductor and plug is replaced properly when

re-connecting the rubber hose to the puck.
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7.3.1 Inelastic Collision - Unequal Masses

• Place a sheet of white paper on top of a graphite sheet on top of the table. Weigh the
non-magnetic puck and its Velcro collar. Weigh the non-magnetic puck with the metal
collar and its Velcro collar. Record both values below.

Mass of non-magnet puck
Mass of non-magnet puck with metal collar

• Set the spark timer to 20 Hz. Place the puck with the metal collar in the middle of the
table and turn on the air supply. The puck should remain approximately motionless.
If the puck moves, level the table by adjusting the legs of the table so the puck remain
motionless.

• You may want to practice the next step without the spark timer a few times before
attempting to take data with the spark timer.

• Turn on the power to the spark timer. Push the puck without the lead collar towards
the stationary puck with the insulating plastic tube. At the same time one lab
partner pushes the puck, the other partner should push and hold the trigger button
on the spark timer. The pucks should stick together because of the Velcro collars and
move off together. The pucks should not rotate after sticking together.

• Turn off the spark timer and remove the white paper. The ’dots’ where the spark time
burned the paper will appear on the side of the paper facing down.

• For each set of data before and after the collision, measure the dot spacings, ∆x. Find
the average dot spacing, ∆x̄. Calculate the velocity before and after the collision using
v = ∆x̄

∆t
where ∆t = 1

f
= 1

20
s = 0.05s. Calculate the momentum before and after

the collision. Calculate the kinetic energy before and after the collision. Record you
numbers in the table below.

∆x̄ Velocity Momentum Kinetic Energy
Before Collision
After Collision

• Is momentum conserved during the collision? Is kinetic energy conserved?

7.3.2 Elastic Collision with Equal Masses

• Reuse the white paper by turning it over or using a different region of the paper. Weigh
two magnetic pucks and record the values below The spark timer should remain set at
20 Hz.
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Mass of magnetic projectile (m1) puck
Mass of magnetic target (m2) puck

• Verify the table is level as described in the inelastic collision. Turn on the spark timer.

• Place the target puck in the center of the table. Trigger the spark timer as the the
other puck is pushed towards the stationary puck with an insulating plastic tube. The
collision should not be head-on (1 dimensional).

• Remove the paper from the table. Take the (negative) x axis along the track of the
incoming puck and the origin at the point of collision. Find the average dot spacing,
∆x̄, for each track (incoming puck track and the two outgoing puck tracks). Using the
average dot spacing and the 20 Hz frequency, determine the velocities of each track.
Using a protractor, determine the angles of the outgoing tracks with respect to the
positive x axis. Calculate the momentum components of each of the tracks and show
that momentum is conserved in the collision. Record your data in the table.

Track ∆x̄ v P Θ Px Py

Incoming
Target

Projectile

• Using the magnitude of the velocity for each track show that kinetic energy is conserved
in the collision.

7.3.3 Elastic Collision with Unequal Masses

• Repeat the elastic collision procedure using the metal collar on the stationary puck.

Mass of magnetic projectile (m1) puck
Mass of magnetic target (m2) puck with metal collar

Track ∆x̄ v P Θ Px Py

Incoming
Target

Projectile
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• Using the magnitude of the velocity for each track show that kinetic energy is conserved
in the collision.

7.3.4 Questions

1. For the inelastic collision, does the calculated fractional kinetic energy change (equa-
tion 7.6) agree with the measured value for the fractional kinetic energy change?

2. If your data shows that kinetic energy is not conserved in either of the elastic collision
procedures, what sources of error might account for the discrepancy?

7.4 Conclusion

Write a detailed conclusion about what you have learned. Include all relevant numbers
you have measured with errors. Sources of error should also be included.
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