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ABSTRACT

In high-precision optical measurements, noise due to quantum fluctuations in the

amplitude and phase of the probing field becomes the limiting factor in detection

sensitivity. While this quantum noise is fundamental and not a result of detection, it is

possible to engineer a quantum state that has reduced noise in either amplitude or phase

(at the cost of increasing noise in the other) called a quadrature-squeezed state. In this

dissertation, we study the use of quadrature-squeezed vacuum states for low-light

imaging and develop a quantum detection method to measure the spatial dependence of

the quantum noise using a camera instead of the traditional homodyne detection. Our

novel quantum imaging scheme paves the way for ultra-low-light imaging due to the

inherently few photons in the squeezed vacuum state. We also expand the method

beyond camera limitations using single-pixel imaging techniques, making the detection

method accessible to a broad range of wavelengths where quantum-limited cameras may

be difficult to find.
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QUANTUM SENSING FOR LOW-LIGHT IMAGING



CHAPTER 1

Introduction

1.1 The Effects of Quantum Noise on Measurements

and What We Can Do About It

The task of understanding noise in an experiment always poses a challenge to scien-

tists. While in the past, most measurements were limited by the noise of the detectors, as

the precision of sensors and measurements have improved, we have run into noise limits

that are imposed by quantum mechanics. For optical measurements, this quantum noise

is inherent to our probing field. This is not something that can be overcome with better

detectors or any classical noise suppression, but rather is deeply tied to the quantum-

mechanical nature of light. This intrinsic noise originates from the uncertainty principle

that constrains the precision of measuring the amplitude and phase of the light - similar to

the position/momentum uncertainty relationship in a simple harmonic oscillator [4, 5, 6].

To circumvent this apparent limit, scientists have developed ways to manipulate the noise

distribution so that it can be suppressed in either the amplitude or the phase (at the cost

of increasing the noise in the other) [7]. This noise manipulation, known as squeezing,
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FIG. 1.1: Example of photons statistics over a characteristic time, τc. Here the x-axis represents
time and each circle represents a photon arriving to the detector at a given time, t.

proves very useful for applications such as precision interferometry [8, 9], where the phase

sensitivity is limited by the shot noise of the vacuum, and imaging [10, 11, 12, 13], where

the noise in the image is often limited by the shot noise statistics of the illuminating field.

1.2 A Brief Historical Overview of Squeezing

While many optical processes can be described using a classical or semi-classical ap-

proach, for a electromagnetic field containing only a few photons the quantum nature is

more apparent - the statistical fluctuations in the light now become relevant. Hanbury-

Brown and Twiss developed an understanding of intensity correlations [14, 4] (to use for

stellar interferometry) by monitoring the photo-currents from two detectors illuminated

with the same light source. This demonstrated how thermal photons were bunched and

opened the door to further exploration of photon statistics/photon counting of light. Once

lasers became available, it was shown that lasers do not exhibit bunching but instead obey

Poissonian statistics. As a result, the laser intensity will always have a certain amount of

noise associated with it. This noise was dubbed ”shot noise” [4].

Roy J. Glauber’s theory of optical coherence [15] predicted that in addition to super-

Poissonian statistics (bunching) of the thermal light there should also be photon anti-

bunching – giving rise to sub-Poissonian statistics. This meant that the fluctuations in

3



the photo-current from the detector should be less than the shot noise. Figure 1.1 shows

a qualitative example of shot noise, bunched, and anti-bunched statistics as a function

of time. Photon anti-bunching can not be understood with a classical theory since, to

produce these types of statistics, you would need negative field amplitude probabilities

which are unphysical [4]. This non-classical feature was demonstrated by Kimble et al [16]

in 1977 using resonance fluorescence from a two-level atom and sparked interest in a new

quantum state where the noise distribution could be manipulated: the squeezed state [4].

Over the next decade, theoretical advances in understanding and generating these

squeezed states took off. In 1979, Yuen [17] outlined a way to generate two-photon states

using four-wave mixing. A few years later, Caves showed how using squeezing could im-

prove interferometric measurements [18], followed by a comprehensive review by Walls [19].

The experimental demonstration soon followed. Slusher generated squeezed states

using four-wave mixing in a cavity [20] and Shelby demonstrated squeezed states in an

optical fiber [21]. Kimble’s group was able to obtain some of the largest amounts of early

squeezing (-4dBs below shot noise) using an optical parametric oscillator (OPO) [22]. The

same group also showed interferometric improvement using squeezed states [23]. Squeezing

has also been generated in atomic systems. Slusher demonstrated squeezing using a four-

wave mixing process in sodium [24], and Lett’s group demonstrated four-wave mixing in

rubidium [25, 26]. Of course, further developments have been made throughout the past

decades [27, 28, 29, 30], with the highest reported squeezing being -15 dBs below shot

noise [31]. These quantum states have been used to develop secure optical communication

channels [32, 33, 34], sub-shot-noise imaging techniques [12], and high precision detectors

like the gravitation wave detector LIGO [9].
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FIG. 1.2: Examples of standard quantum imaging schemes adapted from [1] compared to the
quadrature noise based imaging scheme presented in this thesis.

1.3 Quantum Imaging

For the past few decades, the notion of exploiting the quantum properties of light

has gained traction in the quantum optics world as a way of imaging beyond the shot

noise limit [35, 1]. Up to this point, several different imaging schemes have been explored.

Figure 1.2 shows a simple schematic of three types of imaging that have been studied.

1) Correlation-based Imaging utilizes twin photons. These twin photons are produced

via two-mode squeezing where a single photon is down converted into two intensity corre-

lated photons. In this case, one beam interrogates the object, and the other acts as a refer-

ence. When the two beams are subtracted the image that is formed contains sub-shot-noise

statistics. While there are many ways to exploit these correlated photons [36, 37, 26, 38].

2) Interference-based Imaging also uses correlated photons as the basis of the imaging

scheme. However, in this case, one of the correlated photons interacts with the object and
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is then recombined with its partner using a linear or nonlinear beam splitter. Then one of

the ports is monitored using a camera and the object can be imaged [39, 11, 40].

Many variations on these schemes exist, however, there have not been many studies

using the change in quantum quadrature variance as a means of imaging. Throughout this

dissertation, I will explore the particular case of using a single-mode squeezing vacuum

as the primary probe and study the spatial dependence of the quadrature noise variance

as a new way of imaging [41, 42]. While the method I will present does not create shot-

noise-limited images, it does allow us to work around technical issues of camera dark noise

(see Chapter 4), and when using a single-pixel scheme extract phase information from the

probed object (see Chapter 5).

1.4 Outline of Dissertation

In Chapter 2, I will first give an overview of the theoretical framework needed to un-

derstand quantum and nonlinear optical interactions. Then, in Chapter 3 review standard

detection schemes and methods for manipulating the quantum noise statistics of light. I

will then move on to Chapter 4, the work done in quadrature imaging, and discuss how we

use quadrature noise measurements to image using very few photons and end discussing

imaging in Chapter 5 by presenting the work done towards understanding the mode struc-

ture of the squeezed light via single-pixel imaging. Finally, in Chapter 6.1, I will discuss

the advantages of dispersion-enhanced optical cavity for inertial sensing applications and

the work toward implementation.
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CHAPTER 2

Theoretical Description of EM Fields

2.1 Classical Description of an Electromagnetic Field

We can describe the nature of light propagating through a medium using Maxwell’s

equations which gives us a relationship between the electric field, ~E, and magnetic field,

~B,

∇ · ~B = 0 (2.1a)

∇ · ~E =
ρ

ε0
(2.1b)

∇× ~E = −∂
~B

∂t
(2.1c)

∇× ~B = µ0ε0
∂ ~E

∂t
+ µ0

~J , (2.1d)

where µ0 is the magnetic permeability of vacuum, ε0 is the electric permittivity of vacuum,

ρ is the charge density, and ~J is the current density. Assuming the field is constrained to

a one-dimensional cavity in the z-direction, where ~E is polarized in the x-direction and ~B
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FIG. 2.1: Examples of the HG modes taken from [2].

is in the y-direction,

Ex(z, t) =

(
2ω2

V ε0

)1/2

q(t) sin(kz) (2.2a)

By(z, t) =
µ0ε0
k

(
2ω2

V ε0

)1/2

q̇(t) cos(kz) (2.2b)

where ω is the frequency, k = ω/c is the wave number, V is the effective volume of the

cavity, and q(t) will act as an canonical position.

2.2 Spatial Modes

The spatial distribution of the electromagnetic field in free space can be described

as a superposition of plane waves. When boundary conditions are imposed, it becomes

natural to describe the transverse spatial distribution of the field in terms of spatial modes

commonly referred to as transverse electromagnetic modes (TEM modes). In a laser with

cylindrical symmetry, combinations of Laguerre polynomials make up the spatial modes

(called Laguerre-Gauss modes). If there is rectangular symmetry, Hermite polynomials

determine the mode shape (called Hermite-Gauss modes),
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Emn(x, y, z) = E0
w0

w(z)
Hm

(√
2x

w(z)

)
Hn

(√
2y

w(z)

)
× · · ·

exp

[
−(x2 + y2)

(
1

w(z)2
+

ik

2R(z)

)
− ikz − i(m+ n+ 1)ψ(z)

]
,

(2.3)

where E0 is amplitude, ω0 is the beam waist, ω is the spot size, Hm is the mth Hermite

polynomial, R is the radius of curvature, and ψ is the Gouy phase. The waist is defined

by distance away from the z axis where the field amplitude is 1/e the field amplitude on

the axis. The Gouy phase is a phase the is acquired near the focus of the beam given by

ψ(z) = arctan(z/zR) where zR =
πω2

0n

λ
is the Rayleigh range, n is the index of refraction,

and λ is the wavelength.

For the lowest order hermite polynomial, we recover the gaussian beam profile (H00).

We can write the cross-section of the electric field as, E00(x, y, z) = E0exp(−x2+y2

w(z)2
). The

Gaussian beam (or TEM00) is considered ideal to work with for many applications. Its

single spatial mode allows for clean imaging (see Section 3.1) and a direct understanding of

the local oscillator overlap with the squeezed field in homodyne detection (see Section 2.7).

2.3 Quantization of the Electric Field

The classical Hamiltonian of the field, for a particular polarization, is written as

H =
1

2

∫
(ε0E

2
x +

1

µ0

B2
y) dV, (2.4)
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where we take the integral over the volume of the cavity (described in section 2.1). By

substituting Eq. 2.2 into Eq. 2.4 and integrating over the volume of the cavity, we see

H =
1

2
(p2 + ω2q2), (2.5)

where p is the canonical momentum and p = q̇. Eq. 2.5 is exactly the same the sim-

ple harmonic oscillator (SHO), which has a well established commutation relationship,

[q̂, p̂] = i~. For convenience, we may rewrite the observables, p̂ and q̂, into ”creation” and

”annihilation” operators, â† and â,

â† = (2~ω)−1/2(ωq̂ − ip̂) (2.6a)

â = (2~ω)−1/2(ωq̂ + ip̂), (2.6b)

with the following commutation relation: [â, â†] = 1. The electric field now becomes,

Êx(z, t) = E0(â+ â†)sin(kz), and we can write the Hamiltonian operator as

Ĥ = ~ω(â†â+
1

2
). (2.7)

Defining |n〉 as an energy eigenstate of the single mode field given by Eq. 2.5,

Ĥ|n〉 = ~ω(â†â+
1

2
)|n〉 = En|n〉, (2.8)

where En = ~ω(n+ 1
2
), n ∈ Z+, we see this is analogous to the simple harmonic oscillator.

The lowest possible energy (zero-point energy) is commonly referred to as the vacuum and

has E0 = ~ω 1
2
.
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FIG. 2.2: A representation of the field fluctuations in quadrature (phase-space) representation.

2.4 Quadrature Operators

Analogous to position and momentum operators in the SHO, we define the quadra-

tures,

X̂1 =
1

2
(â+ â†), (2.9a)

X̂2 =
1

2i
(â− â†). (2.9b)

These quadratures satisfy the communtation relation [X̂1, X̂2] = i
2
. The electric field can

be rewritten in terms of the quadratures as: 2E0sin(kz)[X̂1cos(ωt) + X̂2sin(ωt)]. In this

representation, X̂1 is the real part of the electric field and X̂2 is the imaginary part of the

electric field. Again analogous to position and momentum, quadrature variance is given

by [5],

〈(∆X̂1)2〉〈(∆X̂2)2〉 ≥ 1

16
. (2.10)
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This leads us to see that there is a minimum amount of noise that must always exist in our

electric fields that is intrinsic to the quantum nature of the light. Equation 2.10 is called

the standard quantum limit (SQL) when 〈(∆X̂1)2〉〈(∆X̂2)2〉 = 1
16

. Figure 2.2 illustrates

how the quadratures are related to the field amplitude and phase. Variations in the are

the electromagnetic field are denoted by ∆E and ∆φ. These variations are then mapped

to the quadrature space and the spread of these points correspond to the noise in a give

quadrature.

2.5 Classical Detection

There are many applications where the quantum noise in your probing field is irrel-

evant because the measurement is dominated by classical noise, so classical detection of

the electric field will suffice. This classical noise can arise from many sources including:

electronic, thermal and vibrational noise. The good news is many of these classical noises

can be circumvented through thoughtful detection discussed below.

2.5.1 Classical Noise

Typical examples of classical noise include laser intensity fluctuations, temperature

instability in the environment, current fluctuations from power supplies, vibrational noise

(acoustic or otherwise), etc. A simple and common way to remove noise from your probing

beam is to split it in two using a beam splitter, and then look at the differential signal. Now

any common noise in the two beams will be removed. Other noise reduction techniques

include laser frequency locks which reduce noise introduced by frequency drifts, laser am-

plitude stabilizers (noise eaters), and acoustic isolation. But as discussed in Section 2.4,

no matter how well you control the classical noises in your system, you will always run up

against the shot-noise limit.
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2.5.2 Coherent States and the Shot-Noise Limit

We classically described light as a continuous wave propagating through a medium in

Section 2.1. However, this is not entirely realistic. In reality, light sources emit radiation

over a finite period of time causing the detected signal to be an average of all of these

”bursts” with fluctuations around that average. These fluctuations manifest in both the

amplitude and phase of the light and are intrinsic to the quantum nature of the light,

giving rise to the SQL.

The coherent state is a minimum uncertainty state. It has the smallest amount of

noise possible while the two quadratures are equal, 〈(∆X1)2〉 = 〈(∆X2)2〉 = 1
4
, and is

known as the shot-noise limit. It is the smallest amount of noise attainable in a classical

measurement before having to employ quantum mechanics. Figure 2.3 (a) shows the ”ball

on a stick” representation of the coherent state. The length of the stick represents the field

amplitude, i.e. displacement, and the angle, θ away from the x-axis represents the phase.

The fuzzy ”noise ball” on the end of the stick represents the uncertainty associated with

the amplitude and phase.

The coherent state, commonly written as |α〉, can be generated by applying the dis-

placement operator,

D(α) = exp(αâ† − α∗â) (2.11)

to a vacuum state |0〉, |α〉 = D(α)|0〉. Here, α is the complex amplitude of the classical

field. This is the most commonly used field and is what good lasers produce.

2.6 Squeezed Light

In Section 2.5 we discussed the coherent state, where the limits set by the quantum

noise affect the phase and amplitude quadratures equally. However, it is possible to create
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FIG. 2.3: a) noise ball depiction of a coherent state. b) noise ball depiction of a squeezed state.

a state where one of the quadratures has less noise than the shot noise limit. A squeezed

state exists when, 〈(∆X1)2〉 6= 〈(∆X2)2〉, and

〈(∆X1)2〉〈(∆X2)2〉 =
1

16
. (2.12)

To generate these types of noise statics we need to invoke the squeezing operator, S,

S(ξ) = exp(
1

2
ξ∗â2 − 1

2
ξâ†2), (2.13)

where â and â† are the same creation and annihilation operators defined in eq. 2.6, ξ is

defined as

ξ = reiθ, (2.14)

where r is squeezing parameter which determines the degree of squeezing, and θ is the

squeezing angle. To generate a squeezed coherent state, we act the squeezing operator on
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the displaced vacuum,

|α, ξ〉 = D(α)S(ξ)|0〉. (2.15)

Figure 2.3 (b) shows the ”ball on a stick” representation of a phase-squeezed state.

Here |α| is the amplitude (determined by the displacement operator) and the elliptical

”fuzz” represents the noise in the amplitude and phase of the squeezed state. Setting

θ = 0 for simplicity, we can calculate the the average fluctuations of the squeezed and

antisqueezed quadratures,

〈α, ξ|(∆X1)2|α, ξ〉 =
1

4
exp(−2r) (2.16a)

〈α, ξ|(∆X2)2|α, ξ〉 =
1

4
exp(2r), (2.16b)

with the average photon number of the squeezed state being

〈α, ξ|n̂|α, ξ〉 = |α|2 + sinh2(r). (2.17)

For the vacuum state |α|2 = ξ = 0→ 〈α, ξ|n̂|α, ξ〉 = 0. If the vacuum is squeezed |α|2 = 0

still, but now the squeezing parameter is nonzero. Figure 2.4 shows an example of how

the quadrature changes with phase of the electric field.

2.6.1 Generating Squeezed Light

Generating the squeezed field comes through nonlinear light-atom interactions in a

medium. We can describe the polarization response to the field in the medium as,

P (t) = ε[χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + · · · ], (2.18)
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FIG. 2.4: Comparison of the coherent state noise distribution with the squeezed state as the
electric field propagates in time. On the left, an electric field, E(t) is shown as it propagates
in time (or its phase changes). The solid black line shows the mean field value while the
superimposed circle or ellipse represents the noise at that particular time. The top electric field
illustrates the coherent state where there is equal noise in the amplitude and phase, while the
bottom electric field illustrates a phase squeezed state (there is less noise in the phase than the
amplitude). On the right we have the quadrature space depiction of the field (i.e. ball-on-a-
stick description). The stick represents the amplitude of the electric field and the ball (ellipse)
represents the noise associated with each quadrature. Changes in the phase of the field (∆φ) is
represented by rotation about the origin.
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where χ(i) is the ith order electric susceptibility. When E(t) is small the polarization

response linear with intensity. As E(t) grows, the higher order polarization effects start to

create non-negligible effects in the atomic properties. While many applications exploit the

χ(2) nonlinear interaction using second harmonic generation in crystals, it is possible to

access the χ(3) interaction using an atomic vapor. While both χ(2) and χ(3) processes may

give rise to squeezing via photon pair generation, we will focus on χ(3) interactions which

arise in atomic ensembles. A generic way of writing the Hamiltonian in these systems is

[4],

H = i~[|E|2χ(3)â2 − |E|2χ(3)â†2], (2.19)

where |E|2 is the strength of the pump, â† is the creation operator and â is the annihilation

operator. We will explore one of the ways to produce squeezing using a χ(3) light-atom

interaction in Rubidium vapor: polarization self-rotation.

Polarization Self-Rotation

Polarization self-rotation (PSR) occurs when elliptically polarized light travels through

a nonlinear medium. Since the medium is birefringent the right-handed (σ
(0)
+ ) and left-

handed (σ
(0)
− ) polarization components of the light see a different index of refraction. This

causes the one polarization to acquire a phase relative to the other, σ± = σ
(0)
± e∓iφ. If you

write the electric field in terms of its linear components (E
(0)
x , E

(0)
y ), you will see that the

acquired phase results in a rotation of the major axis of polarization by φ

Ex = E(0)
x cos(φ) + E(0)

y sin(φ) (2.20a)

Ey = E(0)
y cos(φ)− E(0)

x sin(φ). (2.20b)
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For a small initial ellipticity, the maximum rotation, φ, expected from this effect can be

written as

φ = ε(0)gL, (2.21)

where ε(0) is the original elipticity, g is determined by the light intensity and features of

the atomic system (discussed further in the next section), and L is the optical path length

[43, 3].

Squeezing from PSR

Polarization self-rotation can also produce squeezing. When a strong linearly po-

larized pump field passes through a χ(3) medium, the major polarization axis is rotated

slightly because there are still vacuum fluctuations (i.e. a very small number of photons)

in the orthogonal polarization. More specifically, two photons are absorbed from the pump

polarization and then simultaneously emitted into the orthogonal polarization with corre-

lated phase. This is due to the type of Hamiltonian governing these systems as described

in Eq. 2.19. The correlations produced result in the quadrature noise distribution chang-

ing, i.e. the quadrature is squeezed like discussed in Section 2.6.1. Predicting the level of

squeezing was studied thoroughly in [44] where they found the variance of the field to be,

〈Êx(φ, L)2〉 =
E2

0

4

(
1− 2gL sinφ cosφ+ g2L2 cos2 φ

)
, (2.22)

where φ is the phase, g is determined by the light intensity and features of the atomic

system (discussed further is Section 2.6.2), and L is the optical path length [43, 3]. Fig-

ure 2.6.1 shows the normalized variance (4〈Êx(φ, L)2〉/E0) as a function of phase, φ.
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FIG. 2.5: Normalized variance of the squeezed field, with gL=2. Here, shot noise is zero and
we can achieve equal amounts of squeezing and antisqueezing.

Estimating g in Rb vapor

We can get a qualitative understanding of where the g parameter arises in our atomic

system, by using the model outlined in [45]. Assume a linearly polarized field passes

through an optically thick medium. We can think of our linearly polarized field as two

circularly polarized fields, σ+, and σ− that couple to resonance structure of our medium

according to Fig. 2.6. The field is not perfectly linear causing one of the circular compo-

nents to be slightly stronger. The fields are nearly resonant with |3〉 and detuned from |e〉

by ∆. Even though there is no magnetic field, the ground states will experience different

ac-stark shifts due to the uneven coupling of the circular field components.

According to [45], we can write the polarization rotation of this system as,

φ =
γκ

2∆

|Ω1|2 − |Ω2|2

|Ω(0)|2
L, (2.23)

where γ is the radiative linewidth of the transitions, κ = (3π/4)Nλ2, where N is the atomic
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FIG. 2.6: Depiction of energy levels.
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density and λ is the wavelength of the field, Ω is the rabi frequency, and L is the path

length. Finally, by taking the results found in [46], we see we can write elipticity, ε, as,

ε ≈ |Ω1|2 − |Ω2|2

|Ω(0)|2
. (2.24)

Putting it all together, we can write,

φ = εgL (2.25)

where g = γκ
2∆

just like in Eq. 2.21. While this description of polarization self-rotation

doesn’t quantitatively reproduce the squeezing levels we see in the experiment, it does give

us insight into the atomic processes and allows us to gain intuition around the experimental

parameters we can control (power, atomic density, etc.).

2.6.2 Why 87Rb?

87Rb is chosen as the nonlinear medium in this work because it is a well studied, alkali

element. This means it only has one valence electron making it hydrogen-like, ideal for

atomic experiments since the atomic energy structure is relatively simple. There are two

optical transitions connecting the ground states that are commonly called the D1 line (λ

= 795 nm) and the D2 line (λ = 780 nm). For the experiments described in the rest of

this work, we will use the D1 line which connects the 52S1/2 ground state to the 52P1/2

excited state. Figure 2.7 shows the ground state and excited state of the D1 line and the

hyperfine levels and the absorption spectrum of the D1 line. We work at this resonance,

particularly the Fg = 2 → Fe = 2 transition, because relatively strong vacuum squeezing

is experimentally produced (∼2.5 dBs).

21



FIG. 2.7: D1 atomic energy levels adapted from [3]. a) shows the saturated spectroscopy
transmission through Rubidium, with the 87Rb transitions labeled (ground state→ excited
state). b) is a level diagram of the D1 transition in Rb.

2.7 Quantum Detection

Once a squeezed state has been constructed, we will need a phase-sensitive measure-

ment scheme so we can detect both squeezed and anti-squeezed quadratures. To meet this

requirement we will use a homodyne detection scheme. To create this we need another

beam as a phase reference, traditionally called the local oscillator. The local oscillator

must be phase-locked to squeezed beam, so we will assume that they both come from the

same lasing source.

To understand the system (see Fig 2.8), we will represent the local oscillator as αLO(t),

and the squeezed state as αin(t), where

αin(t) = αin + ∆X1in + i∆X2in (2.26a)

αLO(t) = [αLO + ∆X1LO + i∆X2LO]eiφLO . (2.26b)

We define eiφLO as the phase difference between the local oscillator and the squeezed
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FIG. 2.8: Homodyne detection scheme

vacuum fields and ∆X1/X2 as the noise in each quadrature respectively.

We consider the case when α2
LO >> α2

in. So, when we mix the squeezed field and local

oscillator, the local oscillator will dominate the signal. The input on each of the detectors

will be |αD1|2 = |αD2|2 ≈ 1
2
|αLO|2. We can write

αD1 =
√

1/2αLO(t) +
√

1/2αin(t) (2.27a)

αD2 =
√

1/2αLO(t)−
√

1/2αin(t). (2.27b)

However, intensities (and photocurrents) are proportional to |αD1/2|2, so the meaningful

quantities are

|αD1|2 =
1

2
[|αLO(t)|2 + αLO(t)αin(t)∗ + αin(t)αLO(t)∗ + |αin(t)|2], (2.28)
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with a similar expression for |αD2|2. Any αin terms can be disregarded based on our

previous assumption leading us to

|αD1|2 =
1

2
[|αLO|2 + 2αLO∆X1LO(t) + 2αLO(∆X1in(t) cos(φLO) + i∆X2in(t) sin(φLO))].

(2.29)

Similar results can be found for the second detector, leaving the differential current as

i−(t) = |αD1|2 − |αD2|2 ≈ 2αLO(∆X1in(t) cos(φLO) + i∆X2in sin(φLO)). (2.30)

So, in the homodyne detection scheme, only the quadrature terms from the input

field (squeezed field) are amplified by the local oscillator contributing to the final signal,

and any small noise from the local oscillator is canceled out since it is common to both

detectors. We also have control over which noise quadrature we analyze by tuning φLO as

needed; φLO = 0 −→ ∆X1in and φLO = π/2 −→ ∆X2in.

Lastly, we can calculate the variance of i−(t),

∆i2− = 〈i−(t)2〉 − 〈i−(t)〉2 ≈ 4α2
LO

(
(∆X12

in(t) cos2(φLO) + ∆X22
in sin2(φLO)

)
(2.31)

Note, cross terms of the form ∆X1∆X2 average to zero.

Figure 2.9 shows experimental homodyne results from a squeezed vacuum. Instead of

sweeping through all the phases, like in Fig. 2.6.1, we tune our phase between the local

oscillator and squeezed vacuum to be either at the minimum noise to measure the squeezed

quadrature, or the maximum noise to measure the antisqueezed quadrature.
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FIG. 2.9: Noise power traces of maximum (antisqueezed) and minimum (squeezed) noise com-
pared to shot noise. We measure -2.1 dB of squeezing and 9.7 dB of antisqueezing.
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CHAPTER 3

Theory of Spatial Noise Detection

3.1 Spatial Overlap with the Local Oscillator

In section 2.7, we showed how homodyne detection works. However, there was an

underlying assumption that the local oscillator is in the same spatial mode as the input

field we are trying to detect. As section 2.2 has shown us though, the spatial distribution

of the field can take on many different spatial modes. Recent theoretical work [47] and

experimental work [48] shows the possibility of the squeezed stated existing in many spatial

modes , i.e. the local oscillator and the input fields do not necessarily have the same spatial

mode. To take the spatial mode mismatch into account, we define the local and input fields

as

αin,n(t) = [αin + ∆X1in,n + i∆X2in,n]uin,n(x, y) (3.1a)

αLO(t) = [αLO + ∆X1LO + i∆X2LO]uLO(x, y)eiφLO , (3.1b)
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where uLO and uin,n are the spatial distributions of the local oscillator and ”nth” mode of

the input field (which could be the squeezed field), and αin(t) =
∑

n αin,n(t).

Similar to before, we assume α2
LO >> α2

in and that each detector (D1/D2) can be

written as Eq. 2.27. So we can write the intensity at the detectors as,

|αD1|2 =
1

2
[|αLO|2 + 2αLO∆X1LO + 2αLO∆X2LO]|uLO(x, y)|2 + · · ·

+
1

2

∑
n

[αLO∆X1in,n − iαLO∆X2in,n]uLO(x, y)uin,n(x, y)eiφ + c.c.,
(3.2)

with a similar expression for D2. We can write the differential intensity as,

i−(t) =

∫
A

(
|αD1|2 − |αD2|2

)
ds

= αLO

∫
A

∑
n

[∆X1in,nuLO(x, y)uin,n(x, y)eiφ

− i∆X2in,nuLO(x, y)uin,n(x, y)eiφ + c.c ] ds,

(3.3)

where we integrate the differential intensity over the detector area, A. We should note

that our detectors, D1 and D2, do not necessarily have to have the same detection area,

A. However, we make this assumption since it is standard to use nearly identical detectors

in homodyning systems. Collecting like terms together we can write

i−(t) = αLO

∫
A

∑
n

[∆X1in,nuLO(x, y)uin,n(x, y) cos(φ)

+ ∆X2in,nuLO(x, y)uin,n(x, y) sin(φ) ] ds.

(3.4)
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3.2 Calculating the Variance

We want to calculate the variance of the current in Eq. 3.4, V = 〈i−(t)2〉 − 〈i−(t)〉2.

Similar to the traditional homodyne detector,

〈i−(t)〉2 = 0 (3.5)

〈i−(t)2〉 = α2
LO

∑
n

[∆X12
in,n cos2(φ) + ∆X22

in,n sin2(φ)]

∣∣∣∣∫
A

(u∗LO(x, y)uin,n(x, y) ) ds

∣∣∣∣2 ,
(3.6)

with all cross terms averaging to zero since ∆X1/∆X2 are not correlated. Calculating the

variance of the differential current we see,

V = 〈i−(t)2〉 − 〈i−(t)〉2

= α2
LO

∑
n

Vn(φ)

∣∣∣∣∫
A

(u∗LOuin,n) ds

∣∣∣∣2
= α2

LO

∑
n

Vn(φ)|On|2.

(3.7)

We define

On =

∫
A

(u∗LOuin,n) ds (3.8)

as the overlap between the local oscillator and the nth mode of the input field over a detector

area (A), and Vn(φ) is the noise (∆X12
ncos2(φ) + ∆X22

nsin2(φ)) we are measuring. Note,

ui are part of an orthonormal basis where
∫∞
−∞ u

∗
numds = δnm. We can write the variance

normalized as shotnoise, Ṽ =
VExp

VSN
, as

Ṽ =
α2

LO

∑
n Vn(φ)|On|2

α2
LO

∑
m V

(0)
m |Om|2

, (3.9)
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where V
(0)
m is the mth spatial mode of shotnoise. Separating the squeezed and unsqueezed

contributions we write,

Ṽ =
α2

LO

∑
s Vs(φ)|Os|2

α2
LO

∑
m V

(0)
m |Om|2

+
α2

LO

∑
n 6=s V

(0)
n (φ)|On|2

α2
LO

∑
m V

(0)
m |Om|2

(3.10a)

Ṽ =
α2

LO

∑
s(Vs(φ)− V (0)

s )|Os|2

α2
LO

∑
m V

(0)
m |Om|2

+
α2

LO

∑
n V

(0)
n (φ)|On|2

α2
LO

∑
m V

(0)
m |Om|2

(3.10b)

Ṽ = 1 +
∑
s

(Vs(φ)− 1)
|Os|2∑
m |Om|2

, (3.10c)

where V
(0)
m = 1 (normalized shot noise) and Vs is the noise of the squeezed component of

the input field. The sum of all the overlaps approaches unity (
∑

m |Om|2 → 1) as A→∞.

When the local oscillator and the squeezed input field are in the same mode and you are

looking at the overlap over a small area, A, it can be written as

|Os|2 =

∣∣∣∣∫
A

uLOusdA

∣∣∣∣2 =
α2

LO

∣∣∫
A
uLOuLOds

∣∣2
α2

LO|
∫∞
−∞ uLOuLOds|2

=
IA

Itot

, (3.11)

where IA is the intensity in the detection area, A, and Itot is the total intensity since the

integral of the oscillator over the detector area effectively calculates the percentage of local

oscillator that falls on the detection area. This ratio of intensities can be viewed as a loss.

3.3 The Effects of Loss on the Variance

Up to this point, we have assumed that the squeezed vacuum propagates and mixes

with the local oscillator undisturbed. However, if we place an absorbing object into the

path of the squeezed vacuum, its transmission, T , will affect the noise we measure. When

a squeezed field experiences loss it can be thought of like passing though a beam splitter

where a portion of the squeezed field is stripped off and replaced with a coherent vacuum.
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FIG. 3.1: Illustration of how a loss will degrade the squeezing to shot noise. Here, the squeezed
state starts with equal amounts of squeezing and antisqueezing (the black dashed line marks
the shot noise level). However, after experiencing loss, the squeezing and antisqueezing both
degrade towards shot noise.

This causes a reduction in the amount of squeezing and antisqueezing present in the field,

bringing the noise distribution close and closer to the shot noise distribution. We can

include this loss into our expression for the normalized variance as

V = 1 +
∑
s

(Vs − 1)
|Os ⊗ T (x, y)|2∑

m |Om|2
, (3.12)

where T ∈ [0, 1] is the field transmission, O is the overlap, O⊗T (x, y) =
∫
A

(u∗LOusT (x, y)) ds,

and Vs is the noise defined in Section 3.2. In other words, 1 − |T |2 is the intensity loss

through the object in the vacuum port.

The squeezed state is extremely sensitive to loss and will quickly degrade to shot noise

as shown in Figure 3.1. By understanding how the loss affects the spatial distribution of

the quantum noise statistics in our probe, we can use the change in noise statistics as
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a way to image objects probed with the squeezed vacuum. To extract the transmission

map, |T (x, y)|2, and image the object placed in the squeezed vacuum, we can compare the

probing field’s variance map (VOb) to the unobscured, empty squeezed vacuum variance

map (i.e. T (x, y) = 1),

Vempty(x, y) = 1 +
∑
s

(Vs − 1)
|Os|2∑
m |Om|2

(3.13a)

VOb(x, y) = 1 +
∑
s

(Vs − 1)
|Os ⊗ T (x, y)|2∑

m |Om|2
. (3.13b)

(3.13c)

Assuming a single squeezed mode and that the transmission does not change over the

detection area, A, we can write,

VOb(x, y) = 1 + (Vs − 1)
|Os|2∑
m |Om|2

T (x, y)2. (3.14)

Now, by subtracting one from Eq. 3.14 and Eq. 3.10, and taking the ratio we find,

T (x, y)2 =
VOb(x, y)− 1

Vempty(x, y)− 1
. (3.15)

This method of retrieving the object’s transmission map based on noise measurements is

the foundation of imaging with quantum noise.

3.4 Effects of Noise Contamination

True degradation of the squeezed field due to losses in the vacuum’s path would

result in the squeezed and antisqueezed quadratures both approaching shot noise as seen

in Section 3.3. However, when parasitic noise contaminates the probing field, several effects
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FIG. 3.2: Illustration of how a contaminating field alters the noise distribution of a squeezed
state.

may occur that distort the variance. Assuming perfect overlap between the local oscillator

and squeezed state, as well as a detector area much larger than the spatial mode of the

beam, we can model the squeezed vacuum noise response to change in phase as,

V1(φ) = V0 cos2(φ) +
1

V0

sin2(φ), (3.16)

where V0 = e2r as defined in Eq. 2.16.

If there is a parasitic noise mode, Vp, contaminating our original squeezed state and

overlapping with the local oscillator, the sum of V1 +Vp results in a new state that has left

the antisqueezed quadrature largely unchanged while degrading our squeezed quadrature

closer to (or even beyond) shot noise. Figure 3.2 shows the noise ball depiction of a squeezed

state and a contaminating state. Figure 3.3 illustrates how the noise of a squeezed state

would change under obscured detection, loss in the squeezed field, and the addition of a

contaminating noise mode. Understanding how the noise distribution changes with loss

or contamination are imperative to exploit the spatial noise properties for imaging since

we don’t want to confuse loss from an object we want to image with amplified noise

contamination. This problem becomes very difficult once you move from a single spatial
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FIG. 3.3: Illustration of noise under different conditions. The solid black curve shows an
unobscured squeezed state noise trace (V1), the light grey dashed line shows the pure squeezed
state after experiencing a loss, and the red dotted line shows the squeezed state when a parasite
mode (V1 + Vp) is present. The shot noise level is at the zero mark.

mode to multiple spatial modes since each spatial mode may have its own squeezing angle.
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CHAPTER 4

Direct Quantum Imaging with a

CCD Camera

4.1 Introduction

While traditionally squeezing is used to suppress noise in interferometric measure-

ments, during the past few decades people have also explored using squeezing for imaging.

There are several limitations that come into play when imaging: 1) the dark noise level

of your camera, 2) the resolution of your imaging system (set by your physical optics

or the diffraction limit), 3) the shot noise of your light. Many quantum-based imaging

schemes [12, 13, 49, 50, 35] focus on reducing the noise in your image beyond the SNL

by suppressing the uncertainty in the photon number using two-mode optical fields which

have correlated intensity fluctuations — outperforming its classical counterpart. These

are generated through parametric down conversion [51, 52, 53, 54] or four-wave mixing in

an atomic vapor [38, 55, 56, 57, 58]. If an object is placed in one of the optical beams, its

shape can be recreated with sub-shot-noise accuracy by subtracting the intensity images
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of the two quantum-correlated beams. However, the average intensity of each beam puts

a limit on the acceptable level of the dark noise in your detector, i.e. the average intensity

must be larger than the detector dark noise. Typical photon-counting detectors can do

this job well but do not readily offer spatial information. CCD cameras on the other hand

often present a challenge for imaging weak optical fields due to their relatively slow frame

rate (this makes it harder to mitigate low-frequency technical noises) and their intrinsic

dark noise [58, 59].

There are several applications that require imaging with low-light illumination where

counting individual photons become necessary. The accuracy of such detection is then

determined by the photon statistics and by the technical noises, such as laser intensity

fluctuations or the detector dark noise, and normally requires a long exposure detection

to allow for statistical averaging.

In this chapter, we demonstrate a quantum-based imaging method reliant on analysis

of the quantum field variance instead of the photon intensity that enables us to solve the

problem of the dark noise at low illumination levels yet having better spatial reconstruction

ability than traditional intensity-based measurements. In the presented experiments we

use a quadrature squeezed vacuum field, containing very few photons on average. When

such field interacts with an opaque object, it is quantum fluctuations in the obstructed

zone are replaced with a regular vacuum.

The goal is to record the spatial distribution of the resulting noise quadrature even in

the presents of strong dark noise. To do this, we mix the quantum probe with a classical

local oscillator field to amplify its quantum noise, realizing a camera-based balanced homo-

dyne detection, allowing us to image the fields with as low as one photon per frame while

obtaining spatial details of the object with significantly less acquisition time, see Fig. 4.1.

This makes it attractive for photosensitive applications like non-destructive imaging of bi-

ological samples [60]. Additionally, we can use an anti-squeezed quadrature, increasing the
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FIG. 4.1: A conceptual representation of the proposed quantum shadow imaging. Both schemes
rely on camera images of the probe and reference beams to create the transmission map of an
object. However, the quantum shadow method uses the average quantum fluctuations of the
probe and reference fields, amplified by a local oscillator. The quantum shadow maps are on a
linear scale.

tolerance to optical losses. The key advantage of this scheme is that the squeezed vacuum

inherently has very few photons illuminating an object, so in low light conditions, our

method outperforms coherent (laser) illumination with the same total number of photons

when the detection noise is limited by the camera dark noise (see Figs. 4.6, 4.7, and 4.9).

4.2 Theoretical Framework

The concept of the proposed method is illustrated in Fig. 4.1. A CCD camera detects

the number of photons incident on each pixel N on top of its internal dark noise Nd.

For a standard intensity measurement, the boundary between a fully illuminated region

(the average photocounts 〈N + Nd〉) and a fully blocked region (the average photocounts

〈Nd〉) can be distinguished by the difference between these two photocount values. We

can sum the dark noise and shot noise counts since they are uncorrelated and estimate the

signal-to-noise of intensity measurements as

SNRt =
N̄√

N̄ + 2(∆Nd)2
, (4.1)
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where N̄ is an average photon number detected, and ∆Nd is the variance of the dark noise

counts.

We propose instead to measure the normalized variance, V , of the quadrature Xθ =

cos(θ)X1+sin(θ)X2, whereX1 = a+a†, X2 = i(a†−a), and a†(a) is the creation(annihilation)

operator for the photon state. In this case, a similar boundary between the light and dark-

ness can be detected via the deviation of the noise variance for the region, illuminated by

a quantum probe, from unity - the noise variance of the coherent vacuum. For example,

if an experiment uses a squeezed vacuum with the squeezing parameter r, the expected

variance values for the squeezed and anti-squeezed quadratures are V = e∓2r, correspond-

ingly. We can also estimate the noise of such measurement by calculating the variance of

the corresponding variance values for such a squeezed vacuum field, yielding the following

theoretical signal-to-noise ratio:

SNRq =
V − 1√

2 + V 2 + V 4
. (4.2)

Note, that for this calculation we can neglect the camera dark noise thanks to the

homodyne detection. As a result, we can compare the performance of the two approaches

as a ratio of the two signal to noise values for an anti-squeezed vacuum field, and a coherent

beam with similar average number of photons N̄ ' sinh2(r)� 1:

SNRq

SNRt

=
e2r − 1√

2 + e4r + e8r

√
sinh2(r) + 2(∆Nd)2

sinh2(r)
(4.3)

'
√

1 +
2(∆Nd)2

N̄

It is easy to see that in the limit of the small photon number N̄ � 1, the two method

perform equally well in the case of vanishing dark noise; however, if a dark noise becomes

comparable with the average photon number, the advantage of the quantum, noise-based
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measurement becomes more obvious.

To reconstruct the image of the object, we calculate a transmission map T (~x), where

~x is the position of the detection area, traditionally calculated as a ratio of the average

photon numbers in probe (N̄p) and reference (N̄r) beams:

Tt(~x) =
N̄p(~x)

N̄r(~x)
. (4.4)

However, if the recorded images are overwhelmed by the dark noise, the resulting transmis-

sion maps are very noisy. At the same time, we can produce a better quality transmission

map from the quantum noise measurements, since our detection method reduces the detri-

mental effect of the dark noise. We can connect the measured field variance, V (~x) to the

object transmission, |T (~x)|2.

We derived equation 4.5 in Section 3.4, but for clarity I reproduced it below. Assuming

that both squeezed state and local oscillator are single mode,

V (~x) = 1 + (e±2r − 1)
|O(~x)|2∑
m |Om(~x)|2

× |T (~x)|2, (4.5)

where O(~x) =
∫
A
uLOuSqV dA is the overlap between the spatial modes of the local oscil-

lator, uLO, and the squeezed vacuum mode, uSqV , and A is the detection area at location

~x. For the reference beam, where the object is removed, we assume T = 1 everywhere.

For the mode-matched local oscillator and the quantum probe, we arrive at the following

expression of the transmission map using measured quadrature noise variance Vp and Vr

in the probe and reference beams, correspondingly:

|Tq(~x)|2 =
Vp(~x)− 1

Vr(~x)− 1
. (4.6)

Note that our method of transmission calculation is agnostic to the choice of the squeezed or
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anti-squeezed quadrature. In this experiment, we work with the anti-squeezed quadrature,

since it is more robust to the optical losses.

4.3 Experimental Setup

4.3.1 Generating Squeezing

The schematics of the experimental realization of the proposed method is shown in

Fig. 4.2. We generate the squeezed vacuum using a squeezer based on the polarization

self-rotation in a 87Rb vapor cell [44, 61, 62, 63]. An external cavity diode laser (30 mW,

λ ≈ 795 nm), detuned near the 87Rb 5S1/2, F = 2 → 5P1/2, F = 2, passes through an

optical isolator and then to an acousto-optical modulator (AOM). The light is coupled

into a single-mode optical fiber that acts as a spatial filter so we can work with a clean,

single-mode, gaussian beam.

Next, the light passes through a half-wave plate and polarizer that controls the polar-

ization and intensity going into the atomic vapor cell. The polarized pump is attenuated

to 7 mW and is focused into the 87Rb vapor cell heated to 65◦ C, using a 400 mm lens.

The cell rests in the trilayer, metal shield to minimize effects from external magnetic

fields, and the atomic density is controlled by heating the vapor using a resistive heater

wrapped around one layer of the shielding. There the nonlinear interaction described in

Section 2.6.1 takes place and a squeezed vacuum is generated co-linearly, but orthogonally

polarized, with the pump. A second 200 mm lens columnates the beam.

When the squeezed vacuum propagates unobscured to the homodyne detector, we are

able to directly measure the squeezed and antisqueezed quadratures of the field by sweeping

the phase between the LO and SqV using a PZT mounted on one of the polarizing beam

displacers. Right after the squeezer, we detect -1.5 dB of quantum noise suppression
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FIG. 4.2: a) Experimental setup with two different detection schemes: traditional homodyne
and camera. SqV denotes the squeezed vacuum, LO denotes the local oscillator, PR is phase re-
tarder, AOM is an acousto-optical modulator, and PBD is a polarizing beam displacer. Objects
may be placed in the path of the squeezed vacuum where lenses L1 and L2 map the object image
onto the camera. PDs are photodiodes, SA is a spectrum analyzer, the camera is connected to
a computer. b) pictorial representation of the image analysis done to creat the quantum noise
maps
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FIG. 4.3: Squeezing measured using a traditional homodyne detector. The gray line shows
the shot noise level and the black curve shows the squeezed (minimum noise) and antisqueezed
quadratures (maximum noise). We measured -0.5 dBs of squeezing and 7.5 dBs of antisqueezing.

in the squeezed quadrature and 10 dB in the anti-squeezed quadrature. Due to optical

losses in the imaging optics (mainly in the uncoated polarizing beam displacers), after

the imaging system, we detect (with homodyning photodiodes) only 0.5 dB squeezing and

7.5 dB anti-squeezing at the imaging end Fig. 4.3 shows a typical noise trace from the

spectrum analyzer where the gray line is shot noise and the black is the quantum noise as

we sweep through the different quadratures.

4.3.2 Camera Operation

We use a Princeton Instrument Pixis 1024 CCD camera for all of the image collection.

This camera has a very high quantum efficiency (>95%) which allows us to use the photo

counts in our statistical analysis of the quantum noise in our image. In addition, the
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camera has a very low dark noise of 10 counts per µs.

To avoid camera over-exposure, the pump field is pulsed for only 1 µs during the

544 µs duty cycle using an acousto-optical modulator (AOM). Note that pulsed operation

doesn’t affect the generation of squeezing (i.e. there are no concerning transient effects)

and only keeps the pump from saturating the camera.

4.3.3 Imaging

After the squeezer, the pump and squeezed vacuum (SqV) fields are physically sepa-

rated using a polarizing beam displacer (PBD). SqV alone passes through the object and

then recombines with an attenuated pump field which now serves as a local oscillator (LO)

in the imaging balanced homodyning scheme. There is no need for external phase stabi-

lization between the local oscillator and the squeezed vacuum. Because the same pump

that is used to generate the SqV is the LO they are phase-locked and the only source of

phase instability would come from the interferometer. We minimize those effects by creat-

ing the smallest possible arm length (about 6 cm) in the interferometer by using compact

polarizing beam displacers. We image the object onto the camera using a 4-f system of

lenses (see L1 and L2 in Fig. 4.2).

We obtain quantum-limited statistics from images of the two beams on the CCD

camera described in section 4.3.2. This camera can only rapidly capture six frames before

having to pause for half a second for data transfer. We discard the first and last frames

of the series Thus, we collect four frames, separated by 544µs (synchronized with the

pulsed laser) that form ”kinetic clusters”. To extract the information about the quantum

noise variance, we subtract the intensities of the two beams after the final beamsplitter

(labeled “1” and “2”) to create an amplified noise map - a 2D analog of the differential

photo-currents in a traditional homodyne detection scheme. For most measurements, we
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FIG. 4.4: Pictorial illustration of the experimental binning process.

also need to increase the effective detection area, as discussed below. To do that, for

each point ~x = (x, y) we sum all the counts in the radius R around it to calculate the

total photon counts N
(R)
1,2 (~x) – a process we refer to as “binning” (see Fig. 4.4). Next, we

calculate the image of the quantum fluctuations variance V (R)(x, y) normalized to the shot

noise and temporally-average over a given kinetic cluster:

V (R)(~x) =

〈(
N

(R)
1 (~x)−N (R)

2 (~x)
)2
〉

〈
N

(R)
1 (~x) +N

(R)
2 (~x)

〉 (4.7)

where the average is taken within the four frames of each kinetic cluster. Finally, we average

the variance maps over all the kinetic clusters for a given set of experimental parameters

to produce an average normalized quantum noise map of our squeezed vacuum, as seen in

the first column of Fig. 4.6.
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4.3.4 Squeezed Vacuum Mode Characterization

If the detection area is much smaller than the mode size of the squeezed vacuum, it

will be seen as a large loss in the system, and degrade any non-classical noise statistics

down to shot noise, as seen in Fig. 4.6 (a). To avoid this, it is necessary to sum the

photo counts over multiple pixels (i.e. bin pixels together) in order to match the size of

the detection area to the characteristic quantum-mode size inside the squeezed vacuum

beam [57], and thus provides more efficient quantum fluctuation detection. For example,

Fig. 4.6 (e), (i), and (m) show a clear increase in the measured quantum noise variance,

confirming that we have a squeezed mode much larger than the camera pixel size.

We can deduce the number of modes in the images of our unobscured by calculating

the mean variance for a particular bin size. Figure 4.5 shows how the mean variance

increases consistently as the binning area increases. This suggests that we are working

with a single-mode field. If we were dealing with a multimode beam, we would expect the

noise to plateau once the mode size matched the bin size.

4.4 Results

To experimentally demonstrate the imaging technique with the squeezed vacuum, we

insert a completely opaque rectangle as our mask to block approximately one quadrant

of the probe beam as our test object to be inserted only in the squeezed vacuum channel

(see Fig. 4.2). Fig. 4.6 shows the examples of measured variance maps for both reference

and probe beams for different beam binning. Fig. 4.6 (column four) shows a cross-section

of the experimental quantum shadow transmission map at the location of the red line

and compares it with the calculated transmission map of an ideal noiseless beam sampled

with the same detection area of radius R. As discussed above, when the radius (R) of
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FIG. 4.5: Average binned noise in an image for a given bin size.

the sampling the area is small (top) it is impossible to see the quantum shadow, since

the detected quantum statistics is indistinguishable from a shot-noise limited beam [64].

However, as we increase detection area radius (top to bottom rows), the difference in

quantum statistics between the blocked and open regions of the mask become more and

more pronounced, creating a resolvable “quantum shadow”. Such improvement, however,

comes with the price of somewhat reduced “sharpness” of the image features. This is

because the spatial resolution of the quantum noise maps is inversely proportional to the

size of the detection area, while the contrast of the edge is proportional to the detection

area. The spatial resolution is also tied to the size of the squeezed mode, as discussed in

Eq. (4.5), since the size of the detection area needs to correspond to the size of the mode

for the best contrast. Thus, in general, a non-overlapping multimode squeezed field with

a small mode size is more attractive for imaging applications, compared to a single-mode

optical field. Some information about the mode decomposition of our squeezed vacuum
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FIG. 4.6: The first column (a, e, i, m) shows the noise maps (defined with Eq. 4.7) of the
squeezed vacuum with no objects in the vacuum port. The second column (b, f, j, n) shows the
noise maps for the squeezed vacuum with the mask in the vacuum port. The third column (c,
g, k, o) shows the transmission map, T, as defined in Eq. 4.6. In the final column, the black line
shows transmissions through the mask in the T maps where the red line contrasts the noiseless
classical intensity cross-section through the same region for the same detection area. The first
row (a, b, c, d) has a detection area with a radius of R = 1, the second row (e, f, g, h) has a
detection area of R = 5, the third row (i, j, k, l) has a detection area with a radius of R = 10,
and the last row (m, n, o, p) has a detection area with a radius of R = 15. The reference and
probe maps are on a dB scale.

field may be gleaned from the first column of images in Fig. 4.6. If our reference beam was

in the single-mode matching the LO, we would expect it to have a normalized variance

proportional to the overlap parameter of a fundamental Gaussian spatial mode with itself

according to Eq. 4.5. However, a clear ring-like structure emerges as we increase the

detection area, suggesting the presence of weaker higher-order modes. Nevertheless, our

close-to single-mode squeezer demonstrates quite good visibility of the image.

To quantify the quality of our quantum noise images, we calculate the similarity
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FIG. 4.7: Traditional imaging with 250 photons per frame. The first column (a, e, i, m) shows
the ordinary intensity image of the beam with no objects in the port. The second column (b,
f, j, n) column shows the intensity images for the beam with the mask in the port. The third
column (c, g, k, o) shows the transmission map, T, as defined in Eq. 4.4. In the final column,
the black line shows transmissions through the mask in the T maps where the red line contrasts
the noiseless classical intensity cross-section through the same region for the same detection
area. The first row (a, b, c, d) has a detection area with a radius of R = 1, the second row
(e, f, g, h) has a detection area of R = 5, the third row (i, j, k, l) has a detection area with a
radius of R = 10, and the last row (m, n, o, p) has a detection area with a radius of R = 15.
The reference and probe maps are on a photon count scale.
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FIG. 4.8: Comparison of the quantum shadow imaging to classical direct intensity imaging.
Every image uses statistics from 800 frames, the transmission map utilizes 1600 frames: 800
frames for the shadow and 800 for the reference image. Row one shows the quantum shadow
image and transmission map with 1 photon per frame. The classical image and trans- mission
map using 5 photons per frame is shown in row two. Similarly, images in row three use 150
photons per frame. The dashed circle encloses points where the optical signal is equal to or
greater than the dark noise (SNR ≥ 1). In all cases, the probe and the local oscillator (for the
quantum shadow) beams have the same beam full-width half maximum of 38 pixels
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FIG. 4.9: The similarity of our imaging method as a function of detection radius. Each
data set corresponds to a different total photon number (Nph) used to illuminate the image.
The black dotted line shows the best similarity possible with our method assuming a perfectly
noiseless image. We theoretically calculate Nquad

ph = Nsq × texpo/tcoherence, where Nsq = 1 is
the number of photons in a squeezed mode with 7.5 dBs of anti-squeezing (assuming a single
mode), texpo = 2 × 10−6s is the exposure time of a frame and tcoherence = 2.5 × 10−6s is the
coherence time of the squeezing. The similarity was calculated over an 80-pixel span centered
around the edge of the mask.

defined as

S =

∑
TexpTo√∑
T 2

exp

∑
T 2

o

, (4.8)

where Texp is the experimentally measured transmission, To is the true object transmission,

and the sum is taken for pixels along a path across the image (we use horizontal straight

line shown in red in Fig. 4.6). This metric allows us to quantify how well our noise analysis

reconstructs the image of an object. To compare this to the traditional imaging method

(see Fig. 4.1), we did several measurements with a weak coherent field as illuminating

source shown in Fig. 4.7. We can see that the dark noise of the camera dominates the

signal (see top row) and even the beam shape is barely resolvable. As we increase the
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radius of the sample area, the details of the beam become more visible, but even for the

radius of 15 pixels, it is hard to see the mask shape.

We see that the quantum noise images have better similarity after a certain binning

and overall reflect the mask shape better for significantly lower photon numbers (we es-

timate that we have about 1 photon per frame in the squeezed vacuum field). This is

because we can boost our quantum noise above the dark noise using a homodyne-like de-

tection scheme and our squeezed photons have correlations that allow us to reconstruct

the image from the noise using less object illuminating resources (photons). It is difficult

to compare the noise shadow imaging method to other quantum imaging methods because

they focus on enhancing preexisting techniques and comparing SNRs, but our method has

no direct classical counterpart capable to operate at such low illumination and high dark

count noise levels.

4.5 Conclusion

In conclusion, we can image an opaque object by illuminating it with a squeezed vac-

uum. Our scheme can use the anti-squeezed quadrature which makes the whole method

more robust against optical and detection losses. We can reconstruct the object by analyz-

ing the quantum noise statistics that change spatially depending on the mode structure of

the squeezed vacuum and the object. This has application in any imaging scenario where

a high photon number could damage the object, such as biological imaging. Also, the

overall scheme is quite simple and outperforms the traditional counterpart even when the

allowed number of illuminating photons is larger by a factor of 150.

We also note that this method has the potential to be generalized to other quantum

states, e.g. a thermal state since it only depends on the state’s deviation from the shot

noise. Since our method is based on analysis of the quantum state variance, it is potentially
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immune to the parasitic illumination by classical light sources for which the quadrature

variance is independent of transmission since stray light does not match the local oscillator

mode will not contribute to the measured quadrature noise. While we have used a simple

opaque object, the method is more general and can be used on semitransparent samples

as well. Analyzing such samples is left for future work.
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CHAPTER 5

Single-Pixel Imaging for Quantum

Fields

Single-pixel imaging is a relatively new, classical imaging technique that allows you

to gather spatial information about a scene or object you want to image using only a

single-pixel camera, i.e. a photodiode. This form of imaging is very attractive because it

has the ability to capture images at high frame rates, at wavelengths outside of current

image sensor capabilities, and in three dimensions.

While we have demonstrated noise-based imaging using a camera in Chapter 4, often-

times there may not be the necessary equipment at the wavelength you wish to interrogate

your sample with. Additionally, cameras are quite slow making it is difficult to get useful

phase information from them. Single-pixel imaging [65] provides a simple solution to these

issues. This technique, developed alongside compressive sensing [66, 67, 68], is a way of

sampling an image using only a photodiode (single-pixel camera) and then reconstructing

the image. In this chapter, we will explore how to use single-pixel imaging techniques to

reconstruct a quantum field.
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FIG. 5.1: Classical single-pixel imaging setup. A light source illuminates a scene (the ”+”) and
then passes through a spatial filter before being detected on a photodiode.

5.1 Basic Theory of Single-pixel Intensity Imaging

In single-pixel intensity imaging, a light source illuminates a scene and is then collected

onto a photodiode using a form of structured detection. One common form of structured

detection is raster scanning, where a pinhole scans through the image plane and collects

the intensity of the illuminating field. The scene can then be reconstructed, pixel by pixel,

based on the intensity measured with the photodiode at each pinhole location. Another

form of structured detection involves creating patterns of pixels (sampling masks) and

measuring the total intensity of light passing through instead of the intensity from a single

pinhole. With a sufficient number of sampling masks, the scene can then be reconstructed

by summing the masks weighted by the measured intensity. A basic sketch of the structured

detection scheme is shown in Fig. 5.1 and Fig. 5.2.

To classically reconstruct a scene with N total pixels, you are be required to have

M = N different patterns. But, the number of masks may be higher (M >> N) if your
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measurements are subject to noise or your sampling set contains non-orthonormal masks

[65]. Your number of sampling masks may also be less than the total number of pixels

(M < N) if your image is sparse in the sampling basis. This is known as compressive

sensing since you do not need information about each pixel to reconstruct the image.

For convenience, the most commonly used set of orthonormal patterned masks is the

Hadamard modes. We can write our reconstructed signal (field intensity), ũin(x, y), as

linear decomposition of the Hadamard modes, ũin(x, y) =
∑

iwiHi(x, y). After the probe

illuminates the scene, which has an intensity transmission, T (x, y), we can measure the

transmitted signal’s (field intensity), S = ũin(x, y)T (x, y) projection onto Hi(x, y) and

collect the new set of weights, wi =
∫
A
S(x, y)Hi(x, y)ds, associated with the transmitted

signal. We approximate this integral as a sum over all the pixels, p,

wi =
∑
p

S(p)Hi(p). (5.1)

Finally, we can write the reconstructed transmitted field intensity, S, at every pixel using

the Hadamard modes as our sampling set as

S(p) =
1

M

M∑
m=1

wmHm(p), (5.2)

where M is the number sampled masks, Hm is the Hadamard mask, and wm is the pho-

tocurrent (i.e. weight) measured for the mask. Fig. 5.2 illustrates the process.

5.2 Classical Field Reconstruction

By using homodyne detection, we can reconstruct the field and move beyond simple

intensity reconstruction. We can use a similar analysis to reconstruction the classical

54



FIG. 5.2: Illustration of classical image reconstruction process. Each mask produces a pho-
tocurrent that acts as its weight in the image reconstruction described by Eq. 5.2.

field by analyzing the interference between a weak input field and a local oscillator. In

Chapter 3, we derived the differential signal to be Eq. 3.4. Since we are working with a

classical field, we can write

i−(t) ∝ |O| cos(φ), (5.3)

where O =
∫
A

(u∗LOuin) ds is the overlap of the local oscillator and weak field as defined

in Eq. 3.8 of Chapter 3. This can be approximated as the sum, O =
∑

mOm, where

Om =
∑

p uLOuinHm(p), and p are the number of pixels in your Hadamard mask. When the

masked local oscillator has a strong overlap with the input field, the differential signal will

increase. Since single pixel imaging requires us to weight each basis element (Hadamard

mode), we define our weight, Cm(φ), according to Eq. 5.3,

Cm(φ) = |Cm| cos(φ− φm) = i−,m cos(φ− φm) (5.4)
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FIG. 5.3: Example of the classical interference fringes in the differential signal, i−(t), between
the local oscillator and the weak input field for two different Hadamard masks.

Figure 5.3 shows an example of the classical interference fringes measured at the output

of the interferometer. We should note that although the spatial phase dependance isn’t

explictly written in Cm, it is implied since the current is a function of the overlap which is

spatially dependent.

We take this into account and classically reconstruct our field times the local oscillator,

S = uLOuin, by the following formula:

S(x, y) =
1

M

M∑
m=1

|Cm|eiφmHm(x, y). (5.5)

But we approximate it as S(p) = 1
M

∑M
m=1 CmeiφmHm(p), where p is the pixel of the

Hadamard mask. Where Hm is the Hadamard mode, and Cm is the coefficient deter-

mined by the interference between the LO and weak input field, and φ is the common

phase of the local oscillator phase.
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5.3 Single-Pixel Imaging Expanded to Quantum Fields

Single-pixel intensity and field reconstruction using classical light, as shown in Sec-

tion 5.1 and 5.2, is straightforward, since we can easily measure the weights by monitoring

the change in intensity and phase. What happens though when we illuminate the scene

with a quantum field? Expanding the idea of single pixel classical field reconstruction to

the quantum regime can be useful for many of the same examples discussed in Chapter 4,

predominately low-light imaging. If we use the squeezed vacuum to illuminate an object

we can then track how the noise changes as a function of the overlap with the local oscil-

lator - very similar to the classical case described in Section 5.2. How do we reconstruct

the field, uin, based on quantum noise measurements?

To measure the noise, we need to use a homodyne detector that takes into account the

spatial information about the beams like explored in Chapter 3. Note: we realize that we

cannot reconstruct uin alone, but rather its product with the local oscillator, S = uLOuin.

The variance of field can be written as

V (φ) = 1 +
∑
n

(Vin,n(φn)− 1)|On(x, y)⊗ T (x, y)|2. (5.6)

Vin,n is the variance of the nth spatial noise mode of the input probe field, φn is the phase be-

tween the nth probe field mode and local oscillator, O(x, y)⊗T (x, y) =
∫∞
−∞ uLOuinT (x, y)ds

is the overlap between the probe, the local oscillator, and T – the transmission of the probe

through the scene you would like to image. The overlap will depend on which spatial mode

we place on our local oscillator. Also note, since we are collecting all the light, we assume

that we are summing over all the overlaps which are measured on an effectively infinite

detector (A = ∞). This implies
∑

m |O|2 = 1 (see Section 3.2). We will consider two

different cases (1) a single-mode squeezed vacuum with a mode-match local oscillator, and
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(2) a multi-mode squeezed vacuum.

5.3.1 Single-mode squeezed vacuum probe with a mode-match

local oscillator

Assume there is no object in the probe path, so T = 1 everywhere, and we measure

the variance of the input probe that is overlapped with the local oscillator. Similar to

Eq. 5.3, we can explicitly write the phase dependence of Eq. 5.6 as

Vm(φ) = 1 + (V
(max)

in cos2(φ− φm) + V
(min)

in sin2(φ− φm)− 1)|Om|2, (5.7)

(derived in Chapter 3)since we can sweep through φ, the common phase of the local

oscillator phase, and measure the maximum/minimum of Vm(φ). Here, the m is the index

of the Hadamard mode.

All of the spatial information is encoded in the overlap term

Om =

∫ ∞
−∞

uLOHmuinds, (5.8)

and approximate the overlap as a sum across all the pixels of the Hadamard mode

Om =
∑
p

uLO(p)uin(p)Hm(p). (5.9)

For the case with single-mode squeezing and mode matched local oscillator, when

m = 0,

V0(φ) = V
(max)

in cos2(φ− φ0) + V
(min)

in sin2(φ− φ0), (5.10)

since the overlap is 1 because is H0(p) = 1. Now we can express O in terms of our
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quadrature noise measurements

Om =

√
Vm(φm)− 1

V0(φ0)− 1
(5.11)

Analogous to Eq. 5.4, we define the weight of our reconstructed field as

Vm = |Om| =
[
Vm − 1

V0 − 1

]1/2

eiφm/2. (5.12)

Finally we can write the reconstructed the product of our input field and the local oscillator

as

S(p) =
1

M

M∑
m=1

VmHm(p) =
1

M

M∑
m=1

[
Vm − 1

V0 − 1

]1/2

eiφm/2Hm(p) (5.13)

5.3.2 Multi-mode squeezed vacuum

For the multi-mode case, things become tricky. Now, we measure the quadrature

noise from the sum of each contributing squeezed spatial mode

Vm(φ) = 1 +
∑
n

(V
(max)

in,n cos2(φ) + V
(min)

in,n sin2(φ)− 1)|O(x, y)m,n|2, (5.14)

where Vin,n is the noise amplitude for the nth squeezed mode. Using the same procedure

as the single mode case, we find

Om,n =
∑
p

uin,nuLOHm. (5.15)

Its not possible to extract any spatial information about the product of uinuLO unless we

have n unique measurements, which are not available in our current experiment.
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FIG. 5.4: Single-pixel quadrature noise imaging experimental setup. SqV denotes the squeezed
vacuum, LO denotes the local oscillator, and PBD is a polarizing beam displacer. Objects may
be placed in the path of the squeezed vacuum where lenses L1 (100 mm focal length) and L2
(300 mm focal length) map the object image onto the SLM, PDs are photodiodes, and SA is a
spectrum analyzer. We use a PZT controlled by a high voltage supply to change the path length
difference in the interferometer. This allows us to tune between the squeezed and antisqueezed
quadratures.

5.4 Experimental Setup

To experimentally implement the quantum field reconstruction, we generate squeezing

using polarization self-rotation in a cell of rubidium vapor, similar to the experiment in

Chapter 4. The squeezed vacuum is separated from the pump using a polarizing beam dis-

placer (PBD) so that it can independently probe a scene and then be spatially overlapped

with the pump which now acts as the local oscillator. The two beams are now colinear

(see Fig. 5.4 for the complete setup).
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FIG. 5.5: Examples of the intensity mask we wish to impart onto the local oscillator compared
to the phase mask we send to the SLM to generate the spatial profile.

Two lenses are used to image the object onto a 512×512 pixel Meadowlark spatial

light modulator (SLM) where a spatial intensity mask is placed onto the local oscillator.

The SLM works by applying a phase grating across the face of the beam causing portions

of the beam to be deflected out of the optical path. Figure 5.5 shows an example of an

SLM phase mask for a given intensity mask. Even though both the squeezed vacuum and

local oscillator are reflected off the SLM only the local oscillator is affected since the SLM

is polarization sensitive and we tune the LO polarization to be the active one. Our noise

still obeys Eq. 3.10. Adding a mask to the local oscillator modifies the overlap between

the local oscillator and the squeezed probe, and hence will modify the noise we measure

on the photodiodes. Figure 5.9 shows an example of the quantum noise for two different

spatial masks.

We use the Hadamard modes as our sampling basis [69]. These modes consist of a ±1

tiling generated using the Hadamard matrix. The Hadamard matrix is defined recursively

as

H ′i+1 =

H ′i H ′i

H ′i −H ′i

 , (5.16)
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FIG. 5.6: An example of how we used the Hadamard matrix as a generator for our basis elements
for a 2x2 image.

FIG. 5.7: Comparison of the ideal hadamard mode to the experimentally generated hadamard
mode.

where H ′1 = [1]. Each column of the matrix, H ′i+1, is reshaped into a square matrix which

serves as one of the basis elements for the image detection basis. Figure 5.6 shows an

example for the 2x2 case.

Experimentally, we cannot generate a ”−1” on our SLM. To circumvent this technical

difficulty, we generate a pair of masks (H±) which both are tiled to be 0 and 1, but

are the inverse of each other so that they subtract to equal a true Hadamard mode,

Hm = Hm,+−Hm,− [65]. We measure the corresponding weight for each mask and use the

differential weight in the reconstruction algorithm described in Section 5.2 and 5.3.

The probe and local oscillator are then mixed on a polarizer and sent to a balanced

detector. From there, the differential signal is sent to a spectrum analyzer where the

quadrature noise is analyzed. A piezo-electric transducer (PZT) controllably changes the
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FIG. 5.8: The left axis shows how the intensity changes with phase, while the right axis shows
how the noise changes with phase.

path length difference between the squeezed vacuum and the local oscillator allowing us

to measure the squeezed or antisqueezed quadrature. We correct for any drift in phase by

collecting a reference mask after every 100th mask.

There is also a small amount of classical leakage (5 µW ) that propagates along with

the squeezed vacuum. This allows us to also reconstruct the classical field using single-

pixel methods described in Section 5.2 since the interference between the leakage and the

local oscillator will depend on the overlap between the two. There is an extra factor

of two included in the classical phase term to account for the fact the quantum phase

changes as cos2(φ) while the classical phase changes as cos(φ). Fig. 5.8 shows experimental

measurements of the intensity (Eq. 5.4) and noise (Eq. 5.6) dependence on phase. By

sweeping one arm of the interferometer, we can easily track the phase between the weak

field and the local oscillator. This allows for a complete reconstruction of the classical

leakage field (of course as a product with the local oscillator).
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FIG. 5.9: A sample noise power trace as we sweep through the phases for an unobscured
squeezed vacuum with a blank mask on the LO (black), an unobscured squeezed vacuum with
an example Hadamard mask on the LO (light blue), and the shot noise level for reference (red)
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5.5 Reconstructing the Squeezed Vacuum

For illustration, let us assume there are input field two modes. One that is a squeezed

mode (V1) and another a ”parasitic” mode (V2) that adds unwanted noise. With no object

in the probe’s path, Eq. 5.6 becomes

V (x, y) = 1 + (V1 − 1)|O1(x, y)|2 + (V2 − 1)|O2(x, y)|2. (5.17)

Assuming V1 is squeezed and V2 is a thermal state (extra noise distributed equally in each

quadrature, i.e. it is phase independent) where max(V 1) > V 2 > 1, we can explicitly

write the phase dependence as,

V (x, y) = 1+(V
(max)

1 cos2(φ1)+V
(min)

1 sin2(φ1)−1)|O1(x, y)|2 +(V2−1)|O2(x, y)|2, (5.18)

where φ1 is the phase between the local oscillator and the quantum probe, V1,max/min is the

maximum/minimum noise in V1.

As discussed in chapter 3, when there is a parasitic or contaminating mode, it does

not affect the antisqueezing quadrature much, but completely overwhelms any squeezing

that exists and may even push the minimum noise above the shot noise (see Fig. 3.3). This

is what we observed in Fig. 5.9. When we select certain masks, we increase the overlap

of the parasitic mode that distorts our squeezing. Knowing this, we can reconstruct our

squeezed state by looking at the maximum and minimum noise that exists, as we sweep

through our phase for different masks. Reconstructing with the maximum noise (V (max))

will give rise to the antisqueezed noise distribution since it has been relatively uneffected

by the contaminating noise mode, while using the minimum noise (V (min)) will give the

parasitic mode (if it exists) since it dominates the low noise signal. We reconstruct the

quantum distribution by plugging the max or min variance measured into Eq. 5.13.
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FIG. 5.10: The top row is the amplitude reconstruction of uLOu1 (maximum noise) or uLOu2
(minimum noise), and the bottom row is the phase reconstruction. The first column is re-
constructed based on the minimum noise, the second column is reconstructed based on the
maximum noise, and the third column is reconstructed based on classical interference.

Figure 5.10 shows the phase and amplitude reconstructed images based on the mini-

mum noise, maximum noise, and classical intensity. For the minimum noise reconstruction,

you can see that there are two lobes in the intensity and two distinct phases in the phase

reconstruction. This looks like the HG01 mode. Preliminary studies of dependence on

power (see Fig. 5.11 and Fig. 5.12) and temperature (see Fig. 5.13) show the parasitic

mode is not strongly coupled to those specific parameters.

Much more work needs to be done to understand the origin of this parasitic mode.

Key questions that are remaining include 1) is this parasitic mode squeezed at a different

squeezing angle or does it follow some other noise statistics? 2) Are there other modes that

we can deconvolve from our reconstructed images? While there is still much to understand

about squeezed states, our novel single-pixel quantum imaging technique outline in this

chapter can be a useful tool.
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FIG. 5.11: Reconstruction of the uLOu2 using the minimum noise as the weight for different
input pump powers.
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FIG. 5.12: Reconstruction of uLOu1 using the maximum noise as the weight for different input
pump powers.

FIG. 5.13: Reconstruction of uLOu2 or uLOu1 using the minimum noise or maximum noise as
the weight for different cell temperatures.
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5.6 Image Reconstruction

In Section 5.3, we assumed complete transmission (T (x, y) = 1) everywhere but what

if we want to reconstruct an image or scene (3D features) illuminated by the input field

(i.e. the squeezed vacuum)? Assuming the single-mode squeezing case, conveniently, not

much changes. We can write our input field as, uinT (x, y), so our overlap term becomes

Om ⊗ T (x, y) =
∑
p

uinT (x, y)uLOHm. (5.19)

Our reconstruction method remains the same. We just let uin −→ uinT (x, y) which

means S −→ Sobject We see we are able to reconstruct the convolution of the input field,

local oscillator, and scene transmission. But, if we compare the reconstruction of the field

with an object in its path to the empty vacuum case, we remove the contribution from

input field and local oscillator and can recover the transmission.

T (x, y) = Sobject/S =
uinuLOT (x, y)

uinuLO
. (5.20)

To demonstrate the method’s capabilities, we imaged a phase (see Fig. 5.14) and inten-

sity mask (see Fig. 5.15). For our sampling masks, we choose the orthonormal Hadamard

modes which are commonly used for single-pixel imaging [69]. We then track the phase

and maximum noise from our noise traces. Fig. 5.9 shows an example of what these noise

traces look like. For the squeezed vacuum, and no mask on the local oscillator (i.e. it

has its natural Gaussian shape), we can measure ∼ 0.7 dBs of squeezing and 6 dBs of

antisqueezing. When we place a Hadamard mask onto the local oscillator, we modify the

overlap term in Eq. 3.10, resulting in a different maximum and minimum noise and a

different phase.

For the phase reconstruction, a simple 3-section mask with each portion containing a
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FIG. 5.14: Left to right: quantum phase reconstruction of 3-section phase mask, and classical
phase reconstruction. The z-axis denotes the phase (π, π). The final image shows the classical
amplitude reconstruction of the phase mask.

different phase was placed into the center of the squeezed vacuum. We then reconstructed

the intensity and phase using our classical procedure (Eq. 5.5) to have an idea of where the

three-phase region was in the beam. Taking the real part of S(x, y) gives us the amplitude

map, and taking the imaginary part gives us the phase map. To generate the quantum

phase map, we follow the quantum procedure (Eq. 5.13) and look at the imaginary part.

We can distinctly see the three-phase regions in both the classical and the quantum image

reconstruction (see Fig. 5.14). The same procedure is used to generate the amplitude maps

shown in Fig. 5.14 and Fig. 5.15. In both cases, the quantum image was sampled with

approximately 10 orders of magnitude fewer photons.

5.7 Conclusion

We developed and experimentally demonstrated a proof-of-concept single-pixel imag-

ing scheme that reconstructs a product of the input field and local oscillator. While it is

not possible to reconstruct the input field alone, we do know a great deal about the local

oscillator field and can make some simple claims about the object transmission we are

imaging when we are in the single-mode regime. We have been able to reconstruct simple

phase and intensity masks and will explore more complicated phase masks, as well as stan-
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FIG. 5.15: Top row: Classical reconstruction. Bottom row: Quantum reconstruction using the
antisqueezed quadrature. Left to right: amplitude reconstruction of a ”+” in the vacuum port,
amplitude reconstruction of the empty vacuum port, and the transmission map generated by
the ratio of the first two.
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dard resolution targets to further benchmark our system again current imaging systems.

Challenges that remain include laser detuning stability, interferometer phase stability, and

increasing the amount of squeezing in our system for enhanced imaging results. We also

want to further explore the origin of the contaminating noise mode to see how we might

be able to reduce/remove it.
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CHAPTER 6

Dispersion Enhanced Laser

Frequency Response

Up to this point, we have only been discussing how to use the nonclassical properties

of light for imaging — particularly ones that are generated using nonlinear processes in

rubidium. But, using the same nonlinearities in 87Rb we can also generate a host of

useful light-atom interactions that can benefit the world of metrology beyond imaging. In

this chapter, we will explore how four-wave mixing in 87Rb can enhance lasing frequency

response to cavity length changes. The following work was published in [70].

6.1 Applications of Dispersion Enhanced Lasers

We show how to control the response of the lasing frequency to the laser cavity length

change on demand — allowing for either dramatic enhancement or suppression. The res-

onant frequency link to the cavity round trip path is the foundation for optical precision

measurements such as displacement tracking, temperature sensing, optical rotation track-
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ing [71], gravitational wave sensing [72], and refractive index change sensing [73]. In other

applications, the laser provides a stable frequency reference, such as precision interferom-

etry [74], optical atomic clocks [75], and distance ranging [76], where the sensitivity of the

lasing frequency to the cavity path length change should be reduced. Our findings allow

for improved laser-assisted precision metrology and potentially make lasers less bulky and

immune to the environmental changes in real-world applications.

6.2 Dispersive Cavities

The addition of a dispersive medium to a cavity modifies its frequency response [77]

to the geometrical path change (dp) according to

dfd = − n

ng

dp

ptot

f0 , (6.1)

where f0 is the original resonant frequency, ptot = pe + pdn is the total optical round-trip

path of the cavity, pd is the length of the dispersive element, pe is the length of the empty

(non-dispersive) part of the cavity, n is the refractive index, and ng is the generalized

refractive group index given by

ng = n+
npd
ptot

f0
∂n

∂f
. (6.2)

We define the pulling factor (PF) as the ratio of dispersive to empty (non-dispersive,

ng = n) cavity response for the same path change

PF ≡ dfd

dfe

=
n

ng

. (6.3)
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FIG. 6.1: (i) is the experimental lasing frequency dependence on empty cavity detuning (round
trip path change) in (a) bifurcating regime with estimated ultra high PF> 108, (b) high pulling
regime with PF= 2.7±0.4, (c) enhanced stability regime where |PF| < 0.2 crossing 0. The solid
lines (a and b) show our best fits of the laser frequency dependence using the model described
by Eq. 6.4; the (c) line is the polynomial fit of the 5th degree. The straight dashed line shows
the PF= 1 dependence (i.e. for an empty cavity). (ii) is the PF calculated based on the fits
presented in (i).

75



The PF is the figure of merit for the enhancement of the cavity response relative to

canonical lasers or passive cavities operating in the weak dispersion regime with ng = n.

We tune the PF by several orders of magnitude in the range from -0.3 to at least

108 (see Fig. 6.1), by tailoring the refractive index of our lasing medium. This is the first

demonstration of ultra-high and tunable PF in the laser.

Due to the Kramers-Kronig relationship the negative dispersion is accompanied by

local absorption, so it is not surprising that so far the PF > 1 regime was experimentally

demonstrated only in passive, non-lasing cavities [78, 79, 80] with PF= 363. For active

cavities, Yablon et al. [81] inferred a PF∼ 190 via analysis of the lasing linewidth. The

increased stability regime (PF< 1) was demonstrated in lasing [82] cavities with the small-

est being PF= 1/663 [83]. Superradiant (“bad-cavity”) lasers, where an atomic gain line

is much narrower than a cavity linewidth, exhibit ultra-low PF< 10−6 [84, 85]. Our empty

cavity linewidth is about 13 MHz and the atomic gain linewidth is at least 100 MHz (see

Fig. 6.1), so we operate in the “good-cavity” regime unlike work reported in [84, 85].

6.3 Theory

Similar to [86], we present a simple model of the transmission or amplification spectral

line where the index of refraction has the dependence:

n(f) = 1 + ε
γ∆f

∆f 2 + γ2
, (6.4)

where ε is the resonance strength, ∆f is the detuning from the medium resonance frequency

(fm), and γ is the resonance width, since n(f) − 1 � 10−5 for a vapor filled cavity. For
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FIG. 6.2: (a) Refractive index change (n − 1); (b) dependence of maximum and minimal
achievable PF on resonance strength; (c) laser frequency change and (d) bifurcating behavior
as functions of detuning (or cavity path change). For all figures, γ is set to 6 MHz.
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transmission or gain resonances with ε > 0, the minimum and maximum PF are

PFmax =
1

1− ε/εth
at ∆f = ±

√
3γ, (6.5)

PFmin =
1

1 + 8ε/εth
at ∆f = 0 (6.6)

where

εth =
8γ

fm

ptot

pd

(6.7)

is the bifurcating threshold resonance strength.

The analysis of the dispersion (Eq. 6.4) and its influence on the resonant frequency

of the cavity and PF is shown in Fig. 6.2. As expected, the amplification line has positive

dispersion on resonance (see Fig. 6.2a). Positive dispersion is associated with a large and

positive group index, which results in weak dependence (low pulling factor) of the lasing

frequency on the cavity path change (empty cavity detuning), as shown in Fig. 6.2b. Away

from resonance, the dispersion is negative leading to high PFs, as shown in Fig. 6.2b. The

stronger the amplification (ε) the smaller the PFmin is at the center of the resonance, as

shown in Fig. 6.2b. Consequently, the PFmax continuously grows and reaches infinity at

ε = εth where the resonant frequency bifurcates (see Fig. 6.2b).

To track dependence of the cavity resonant frequency on the cavity path length, we

solve:

ptot = m
c

fd
, (6.8)

where m is the fixed mode number and c is the speed of light in vacuum. In the experiment,

it is easier to track the empty cavity detuning (i.e. resonance frequency change, ∆fe),

which is directly linked to the cavity path change via Eq. 6.1 with ng = n. The resulting
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dependencies are shown in Fig. 6.2c.

If the negative dispersion is strong enough, the group index could be negative. This

would lead to negative PF and to negative dependence of the lasing frequency on the

cavity detuning (see line corresponding ε = 2εth in Fig. 6.2c). This behavior is nonphysical,

since it corresponds to a bifurcation [86]: multiple lasing frequencies for the same cavity

detuning. Consequently, the laser would ‘jump’ to avoid negative PF region and preserve

the monotonic behavior, as shown in Fig. 6.2d and experimentally in Fig. 6.1(i)a.

The most important conclusion from the amplifying line analysis is that high pulling

(response enhancement) regions exist slightly away from the gain resonance. The precursor

of such a regime is a reduced sensitivity region in close vicinity to the resonance. The off-

resonance behavior was overlooked in the literature, while it actually provides the road

to high PF. Away from the amplification resonance, the system still has enough gain to

sustain lasing, and yet it still has large negative dispersion (see Fig. 6.2a). As detuning

from the resonance increases, the dispersion becomes negligible, PF approaches unity (see

Fig. 6.2c and experimental data in Fig. 6.1 a and b), amplification drops and eventually

lasing ceases.

6.4 Experimental Setup

To experimentally demonstrate the modified lasing response to the cavity path change,

one needs a narrow gain line to achieve the highest positive dispersion. We utilized the N-

level pumping scheme depicted in Fig. 6.4. The theory and preliminary experimental study

of this arrangement are covered in references [82, 87, 88]. The strong pumping field Ω1

creates a transmission line for the field α due to electromagnetically induced transparency.

However, the Ω1 field alone is not enough to create the amplification. To create the gain

for the α field, we apply another strong repumping field (Ω2). There is also gain for the β
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field, which completes the four-wave mixing arrangement of fields Ω1, Ω2, α, and β. But

the cavity is tuned to sustain lasing only for α.

Our lasing cavity is similar to the one used in [82]. The ring cavity is made of two

polarizing beam splitters (PBS) and two flat mirrors. The round trip path of the cavity is

80 cm. A 22 mm long Pyrex cylindrical cell with anti-reflection coatings on its windows is

placed between the two PBSs and filled with isotopically pure 87Rb. The cell is encased in

a 3-layer magnetic shield and its temperature is set to 100 degrees C. The optical stability

of the cavity is increased by adding a 30 cm focal length lens placed between the two

mirrors. This lens also places the cavity’s mode waist inside the 87Rb cell.

To produce experimental data sets (a) and (b) shown in the Fig. 6.1, two pump lasers

are tuned near D1 (795 nm) and D2 (780 nm) corresponding to Ω1 and Ω2 fields in Fig. 6.4.

The pump fields are coupled to a fiber beam splitter and amplified by a solid-state tapered

amplifier to powers ranging between 100 mW for the set (a) and 170 mW for the set (b),

and then injected into a ring cavity through a polarizing beam splitter (PBS). The D1

laser is tuned 700 MHz below the 5S1/2Fg=1 → 5P1/2F=1 transition, and D2 is set to

500 MHz below the 5S1/2Fg = 2 → 5P3/2F=3 87Rb transition, as seen in Fig. 6.4. They

provide amplification for fields α and β, which are generated orthogonal to pump fields

polarization. Only the α field resonantly circulates in the cavity, since the pumps exit the

cavity via the second PBS and β is kept off-resonance with the cavity.

Since the D1 pump laser is fixed, the beat note of the pump (Ω1) and the lasing

field (α) with its frequency close to 87Rb hyperfine splitting (∆HFS ≈ 6.8 GHz) is related

to the frequency of the ring cavity laser and allows us to monitor the dispersive laser

frequency change (∆fd). We control the cavity length by locking it to an auxiliary laser

(called the locked laser) with a wavelength of 795 nm that is far detuned from any atomic

resonances and senses a “would be empty” (dispersion-free) cavity detuning (∆fe). This

lock laser beam counter propagates relatively the pump beams and the lasing field to avoid
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contaminating the detectors monitoring the ring cavity lasing. Two wave plates (WP) are

placed inside the cavity. One is to spoil the polarization of the lock field and allow it to

circulate in the cavity. The other rotates the lasing field polarization by a small amount.

This allows it to exit the cavity and mix in with the pump field on the fast photodetector.

6.5 Key Results

The maximum response has the lower bound of PFmax = 1.1× 108 at the 90% confi-

dence level for the data set (a), shown in Fig. 6.1. The upper bound for PFmax is infinity

since the data set belongs to the bifurcating regime. However, one can smoothly approach

this limit by carefully controlling the cavity detuning as our analysis shows in Fig. 6.1(ii)a.

The PFmin range is (0.08 to 0.10) for this data set.

We can avoid bifurcation by increasing the pumps’ powers (i.e., we increase γ via

power broadening), as shown in the data set (b) of Fig. 6.1. This data demonstrates

PFmax in the range (2.3 to 3.2). Also, the range of detuning with PF> 1 is wider. To

estimate confidence bounds, we use the modified smoothed bootstrap method [89].

We are able to make our dispersive laser insensitive to its path change, as shown in

data set (c) of Fig. 6.1. We tune the D1 laser to 400 MHz above the 5S1/2Fg=1→ 5P1/2F=1

transition, and keep D2 at 500 MHz below the 5S1/2Fg = 2 → 5P3/2F=3 87Rb transition,

while maintaining combined pump power at 95 mW. Assuming a smooth dependence on

the empty cavity detuning, the PF at the bottom of the U-like curve is exactly zero,

as the laser frequency decreases and then increases, while the cavity path (the auxiliary

laser detuning) changes monotonically. Our model governed by Eq. 6.4 cannot explain the

arching behavior, since it does not account for the dependence of the dispersion on the

lasing power. However, a more complete the model which solves density matrix equations

of the N-level scheme predicted such a possibility [82].
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There is an ongoing debate whether or not the modified cavity response leads to

improved sensitivity (signal to noise ratio) of path-change sensitive detectors. However,

laser-based sensors in certain applications might benefit either from enhanced PF> 1 (for

example gyroscopes [77]) or reduced PF< 1, since sensitivity, i.e. the ratio of the response

to the lasing linewidth (uncertainty), scales as 1/PF [84, 90]. The tunability and the

versatility of our system allows us to probe either case.

6.6 Conclusion

In conclusion, we achieved about 108 increase of the laser response to the cavity-path

length change relative to canonical lasers. We also can significantly reduce the response,

making our laser vibration insensitive. These findings broadly impact the fields of laser

sensing and metrology, including laser ranging, laser gyroscopes, and laser frequency stan-

dards.
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CHAPTER 7

Conclusions and Outlook

In this dissertation, we studied how to use nonclassical states of light, squeezed light

in particular, to image using very few photons. We took a more detailed look at homodyne

detection, by taking into account the spatial profiles of the optical fields. This allows us to

understand how to measure the spatial distribution of quantum noise. We experimentally

demonstrated a way to measure squeezed light with a camera and then used the technique

to image a knife-edge.

From there we expanded the method beyond the limitations of the camera by im-

plementing a single-pixel detection scheme. Not only does this method allow us to get

around functional limits imposed by a camera (like permissible probing wavelengths), but

it also allows us to easily track the phase and amplitude of our quantum noise. This opens

the door to 3-d imaging since objects of different depths would have our probe acquire a

different phase.

Finally, we studied how to use 87Rb in an optical cavity as a tunable dispersive

medium. By using four-wave mixing in rubidium to generate lasing in the cavity, we

were able to control the optical frequency response to cavity path length change and ei-
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ther make it very sensitive or completely insensitive. This work has implications for a host

of optical metrology tools including: optical gyroscopes, range sensing, and temperature

sensing.

Moving forward, there are many interesting questions that can be answered. With

regards to imaging, further exploration is needed to understand the source and nature of

contaminating noise modes as well as how the spatial modes of the squeezed state can be

manipulated. In the single-pixel setup, a detailed study of how it can be implemented for

3-d imaging via phase detection and what the limits of the depth resolution are is still

needed.
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