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Abstract

We propose a novel optical magnetometer incorporating artificial intelligence

for sensitive magnetic field measurement. The core of this magnetometer is a Fara-

day rotation apparatus, consisting of a glass rod surrounded by a solenoid, linked to a

camera via a multimode fiber. We employed a Convolutional Neural Network (CNN)-

based image classification algorithm to distinguish various ”speckle” pattern outputs

of the fiber, produced by the change in polarization of a probe beam. By decreas-

ing the polarization rotation, we can effectively detect even smaller magnetic field

strengths. Our algorithm successfully detected a change in polarization as small as

1/256◦ or 0.0039◦, corresponding to a magnetic field of 0.03mT, with 100% accuracy.

Additionally, our algorithm was successfully configured for multiclass classification,

efficiently distinguishing between three distinct categories of speckle pattern outputs.

It proficiently differentiates polarization angles as closely related as 0◦, 1/64◦, and

1/128◦. With our current setup, our device supports mobile/remote configuration

and is also handy in settings where electronic devices are not suitable.



Chapter 1

Introduction

1.1 Background

Magnetometers are instruments used to measure the strength and direction of

magnetic fields. They have a wide range of applications, from mapping the Earth’s

magnetic field to detecting magnetic anomalies in infrastructures. As technology

advances, the need for increasingly sensitive and accurate magnetometers continues

to grow, making them an active area of research and development. Optical mag-

netometers, in particular, have shown great potential for achieving high sensitivity

and compact design. They work by probing atoms in a magnetic field with light,

then using the atoms’ or light’s response to detect the field. In this project, we con-

tinue the work of Sofia Brown ’22 on developing a novel optical magnetometer by

combining an optical fiber and machine learning [1]. Our research aims to further

optimize the previously developed training algorithm for a more sensitive magnetic

field measurement.

1.2 Theory

We focus on a specific type of optical magnetometer known as the Faraday

rotation magnetometer. This device utilizes the change in polarization of light as it
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Figure 1.1: [1] A visualization of Faraday Effect, where light (red arrow) propagating
through a material exposed to a magnetic field, B, undergoes change in polarization
of angle ϕ.

interacts with atoms in a material exposed to a magnetic field. As shown in Figure

1.1, an external magnetic field B will rotate the light’s polarization by an angle ϕ.

By this Faraday Effect, the angle of polarization rotation is linearly proportional to

the magnetic field according to

ϕ = CVBl (1.1)

where CV is the Verdet constant, which varies on the material, and l is the length

of the material through which the light propagates. We can then measure magnetic

field by measuring the changes in polarization.

The traditional setup includes a polarizer, which rotates the light’s polarization

by the angle ϕ, and a photodiode (placed after the polarizer), to measure the out-

put. In our experiment, however, we use a novel approach of utilizing a multimode

optical fiber followed by a CCD camera to detect polarization changes. When light is

transmitted through the fiber, the different modes interfere with each other, creating

a ”speckle” pattern of varying intensity profile. As the change in polarization gets
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smaller, the image features also change by a small amount, which is undetectable vi-

sually. This prompted the employment of an image classification algorithm to obtain

the laser polarization from these speckle patterns. In the previous work, the training

algorithm successfully detected a change in polarization as small as 0.6×10−4 degrees,

corresponding to a magnetic field of 0.5 µT . We hope to push this limit further and

achieve sensitivity up to the nanotesla range. With enhanced spatial resolution and

physical compactness, our device would be suitable for settings that require small size

and mobile/remote configuration.
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Chapter 2

Experimental Technique

2.1 Experimental Setup

Our experimental setup consisted of a red laser beam, a Faraday rotation apparatus,

a multimode fiber (MMF), a neutral-density (ND) filter, and a CCD camera (Figure

2.1). We used a modified version of the TeachSpin undergraduate Faraday rotation

apparatus [2], by removing the laser, polarizer, and photodiode that came attached to

it. This apparatus contains a 10 cm long glass rod surrounded by a 15 cm long solenoid

that connects to a power supply. For preliminary work, we used a half waveplate,

instead of the Faraday rotation apparatus, to polarize the laser beam transmitted

through the multimode fiber. The ND filter is used to reduce the intensity of the

laser beam to avoid overexposure. We also placed a cardboard box on top of the

MMF, ND filter, and camera to shield from temperature changes and background

light (Figure 2.2).
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Figure 2.1: [1] A diagram of the experimental setup, consisting of the red HeNe laser,
Faraday rotation apparatus, MMF, and CCD camera.

Figure 2.2: The experimental setup, consisting of the red HeNe laser, TeachSpin
Faraday rotation apparatus, MMF, and CCD camera.

We first created our own calibration plot of current vs. change in polarization

for our apparatus, shown in Figure 2.3. By placing a polarizer after the Faraday
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Figure 2.3: Calibration of the Faraday rotation apparatus: Polarization Angle ϕ
(degrees) vs. Input Current I (A) plot.

rotation apparatus, we recorded the output power for different currents supplied to

the solenoid. Then, using the fact that power, P , is related to the polarization angle,

ϕ, by

P = P0sin
2(ϕ) (2.1)

where P0 is the maximum power, we converted the power values to polarization

rotation angle.

2.2 Data Collection

The data collection process consisted of setting the power supply to different current

values and capturing a number of speckle pattern images for each polarization angle.

In our initial approach to image acquisition, we utilized the video recording feature of

MATLAB’s Image Acquisition Tool, with the intent of extracting individual frames
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for further analysis. However, this method presented significant drawbacks. Firstly,

we realized that the video format employed inherently compresses the data, leading

to a loss of critical details and a reduction in the resolution of the extracted frames.

Moreover, opting for an uncompressed video format results in excessively large file

sizes, making storage and processing unhandy. Additionally, there are limited support

for easily extracting frames from uncompressed video formats, posing a technical

hurdle. This combination of factors prompted us to explore alternative methods for

image acquisition that could better meet our requirements for high-resolution and

detailed imagery.

Our revised approach involves direct acquisition of images into a three-dimensional

matrix, where each ’slice’ of this matrix represents an individual frame. We then

rescale and normalize the images to predefined dimensions, and save each 2D slice

as a separate image file in PNG format. This approach not only preserves the high

resolution and detail of each image but also allows for greater flexibility and precision

in handling the data. We identified the optimal image dimension as rescaling from

1944 x 2592 to 256 x 320 matrices, effectively reducing computational time without

substantial loss of image detail. The images were normalized to ensure the matrix

entries lie between 0 and 1. Our approach also involves setting specific camera pa-

rameters — notably, the Black Level and Device Link Throughput Limit parameters,

to establish ideal capture conditions. We used the default camera setting of ”Mono

8” and turned off all ”Auto” settings for the Exposure and Gain parameters.

These images are then split into training and testing sets and given to the train-

ing algorithm, which will output an accuracy vs. iteration and a loss vs. iteration

plot. This will be explained further in Section 2.3. Throughout the semester, I have

been working on optimizing the algorithm to detect decreasingly smaller polarization

angles.
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2.3 Image Classification Algorithm

The image classification platform we used is the built-in Convolutional Neural Net-

work (CNN) in MATLAB, designed to classify images into two or more categories

based on previous ”learning”. A CNN works by assigning importance, in the form of

weights, to the distinct features present in images. These weights are initially set at

random and are refined as the network ’learns’ from a set of training data.

2.3.1 CNN Architecture

The CNN structure is composed of three key layers: alternating convolutional and

pooling layers, followed by a fully connected layer, with each layer’s specifics detailed

below.

The first step of convolution involves the algorithm superimposing various filters

(matrices of weights smaller than the original image) over the input image. These fil-

ters slide across the image and perform element-wise multiplication to produce feature

maps. The network then employs pooling layers to reduce the spatial dimensions

of these feature maps, therefore reducing computational load. A maximum pooling

layer is usually utilized to help the network focus on the most prominent features of

the image. The process of forming feature maps through convolutional and pooling

layers may be repeated multiple times to extract increasingly complex and abstract

features from the input images. Once the network has completed sufficient repetitions,

a fully connected layer is introduced. It essentially acts as a classifier, analyzing

the comprehensive set of features to determine the most likely category for each input

image.
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2.3.2 Training and Testing Process

The essence of CNN training lies in running the algorithm multiple times through its

layered structure, continuously evaluating and fine-tuning its learning during each cy-

cle. Initially, the network’s convolutional filters are assigned random weights, which

are refined throughout iterations (epochs) using a method called backpropagation.

This is done by generating a loss function, specifically Cross Entropy Loss, which

measures the difference between the network’s predictions and the actual image cat-

egories. The loss function plays a pivotal role in guiding the network to adjust its

weights, especially those contributing to errors in classification accuracy.

Several key parameters could be optimized during training to enhance the CNN’s

learning efficiency. The number of epochs, or training iterations, balances between

sufficient learning and practical runtime. The size of the convolutional filters and

the number of filters per layer are adjusted to capture the necessary level of detail

in image features, with larger and more filters generally improving accuracy at the cost

of increased computational time. The learning rate, a crucial parameter, determines

the magnitude of weight adjustments during backpropagation. A properly tuned

learning rate ensures that the network neither converges too rapidly on suboptimal

solutions nor gets trapped in local minima, allowing for optimal performance during

the training phase.

The last step of the image classification process involves exposing the algorithm to

new images that it hasn’t encountered before, yet are similar to the training images.

The algorithm’s accuracy in correctly classifying these new images is then evaluated.

2.3.3 Accuracy Analysis

During training, the algorithm generates learning curves, plotting classification ac-

curacy vs. training epochs and the loss vs. training epochs. A clear indication
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of successful training is observed when there is a steady increase in accuracy and a

corresponding decrease in loss as training progresses. While accuracy is a discrete

measure, reflecting the correctness of the algorithm’s predictions in a binary format

after each training cycle, loss is a continuous function quantifying the deviation of

the algorithm’s predictions from the actual outcomes. An algorithm displaying both

high accuracy and low loss is typically a sign of a robust training, making it likely to

succeed in future testing situations.

For the testing process, a critical tool of assessment is the confusion matrix.

This matrix quantifies the algorithm’s performance by showing the percentage of cor-

rect identifications and misclassifications for each category. An optimal confusion

matrix would display high values (ideally 1s) along the diagonal, indicating accurate

categorization, and low values (ideally 0s) off the diagonal, signifying few misclassifi-

cations. The overall output accuracy of the algorithm can be quantified by averaging

the values along the diagonal of the confusion matrix.

2.3.4 Multiclass Classification

We also configured our algorithm for multiclass image classification (using CNN as

well), to classify images into more than two different categories. In a multiclass

classification, the CNN architecture, particularly in the fully connected and output

layers are altered to have three nodes, each corresponding to a classification category.

Consequently, the performance of the algorithm is evaluated through a 3x3 confusion

matrix, with each row representing the actual class of the images, and each column

representing the predicted class by the algorithm.
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Chapter 3

Results

3.1 Binary Image Classification

For preliminary work, I analyzed image differences for relatively large polarization

angles (between 4 to 40 degrees) using a half waveplate. The different features of the

images started to be visually indistinguishable as the polarization degree gets smaller

than 10◦ (shown in Figure 3.1). For a polarization angle of 2◦ and smaller, I replaced

the waveplate with a Faraday rotation setup.

Table 3.1 shows the accuracy results for polarization angle differences of 0◦ vs. 40◦

to 0◦ vs. 4◦. I initially used a sample size of 100, splitting 50 of them to the training

and the other 50 to the testing set. This returned an accuracy of 100% up until 0◦ vs.

10◦. The algorithm started having troubles for 0◦ vs. 4◦ with the same parameters

as the previous ones. It only returned an accuracy of 50% and the training plot was

too fluctuating (see Figure 3.2). So I decreased the learning rate (step size at each

iteration while moving toward a minimum loss function) and increased the sample

size to 300, splitting 240 to the training and 60 to the testing set. This significantly

improved the training plot and returned an accuracy of 100%. As seen in Figure 3.2,

the algorithm also took a longer time to reach 100% accuracy for smaller angles.
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Figure 3.1: Image comparison of 0◦ vs. 10 degrees polarization

Polarization Angle (degrees) Accuracy Sample Size Learning Rate

0◦ vs. 40◦ 1 100 0.0001
0◦ vs. 20◦ 1 100 0.0001
0◦ vs. 10◦ 1 100 0.0001
0◦ vs. 4◦ 1 300 0.00001

Table 3.1: Accuracy results for polarization angle differences of 0◦ vs. 40◦ to 0◦ vs.
4◦

Using the Faraday rotation apparatus (instead of the waveplate), I repeated the

same data collection procedure for even smaller angles. Table 3.2 shows the accuracy

12



Figure 3.2: Comparison of learning curves for training between 0◦ vs. 40◦ and 0◦ vs.
4◦. The top left is for 0◦ vs. 40◦, the top right is 0◦ vs. 10◦, the bottom left is 0◦ vs.
4◦ (not optimized), and the bottom right is the optimized plot for 0◦ vs. 4◦.

results for polarization angle differences of 0◦ vs. 2◦ to 0◦ vs. 1/4◦. For 0◦ vs. 2◦,

I initially used a sample size of 300, and the algorithm returned an accuracy of 1.

However, as predicted, the training plot was not as smooth as the previous one for

0◦ vs. 4◦. I tried increasing the sample size to 500 (400 for training and 100 for

testing), and the plot improved. With this same sample size, the algorithm returned

an accuracy of 100% for 0◦ vs. 1◦ (as shown in Table 3.2). However, for 0◦ vs. 1/2◦, I

had to further increase the sample size to 1000 (800 for training and 200 for testing),

and found that this is the current most optimum number for small angles. Although,

from this angle and smaller, it is apparent that the training plot is more fluctuating

and not as smooth (Figure 3.3), even though the algorithm still returned an accuracy

of 1. For 0◦ vs. 1/4◦, I also had to increase the epoch from 8 to 12, as the algorithm

fluctuated longer before reaching 100% accuracy.
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Polarization Angle (degrees) Current Accuracy Sample Size Epochs

0◦ vs. 2◦ 3.45A 1 500 8
0◦ vs. 1◦ 1.72A 1 500 8
0◦ vs. 1/2◦ 0.86A 1 1000 8
0◦ vs. 1/4◦ 0.43A 1 1000 12

Table 3.2: Accuracy results for polarization angle differences of 0◦ vs. 2◦ to 0◦ vs.
1/4◦

Figure 3.3: Comparison of learning curves for training of 0◦ vs. 2◦ to 0◦ vs. 1/4◦.
The top left is for 0◦ vs. 2◦, the top right is 0◦ vs. 1◦, the bottom left is 0◦ vs. 1/2◦,
and the bottom right is 0◦ vs. 1/4◦.
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Further decreasing the angle to 0◦ vs. 1/8◦, we found that the algorithm started to

struggle even more, both for the training and also testing process. We experimented

with a lot of different filter sizes and number of filters for the convolution layer,

particularly focusing on the third layer. The third convolution layer is crucial as it is

a deeper layer responsible for extracting more complex and abstract image features.

The optimum values we found are as follows:

• Layer 1:

– Filter size: 1

– Number of filters: 12 (previously 5)

• Layer 2:

– Filter size: 8

– Number of filters: 24 (previously 15)

• Layer 3:

– Filter size: 20 (previously 12)

– Number of filters: 60 (previously 40)

This adjustment improved the algorithm’s accuracy in distinguishing these finer an-

gles, even as small as 0◦ vs. 1/256◦. Although it came with a slight trade-off: a longer

runtime for the algorithm. With the initial filter configuration, the average training

time was around 10-20 minutes, but with the new one, it became 40-60 minutes. With

these changes, we also found that an epoch count of 8 (instead of 12) is enough to

reach a 100% accuracy, except for 0◦ vs. 1/128◦ and 0◦ vs. 1/256◦ (which needs 12).

Figure 3.4 shows a comparison of the training progress achieved with the previous

and updated filter size configurations for 0◦ vs. 1/128◦. Table 3.3 shows the accuracy

15



Figure 3.4: Comparison of training plots for 0◦ vs. 1/128◦ for different filter sizes.
The plot on the right corresponds to the results using the current optimized filter
sizes and number of filters.

results and corresponding magnetic fields for polarization angle differences of 0◦ vs.

1/8◦ to 0◦ vs. 1/256◦, where our algorithm successfully achieves a 100% accuracy for

all the angles. Note that the magnetic field values were calculated using Eq. 1.1, and

we used a value of CV = 23 rad/(T·m), which is the value for 650nm light. As shown

in Figure 3.5, the training plots were also ideal for all of these angles, with more

fluctuations for smaller angles. Hence, our algorithm successfully detects a change in

polarization as small as 1/256◦, or 0.0039◦. Using Equation 1.1, this corresponds to

a magnetic field of 0.03mT.

Polarization Angle (degrees) Current Magnetic Field (mT) Accuracy Epochs

0◦ vs. 1/8◦ 0.21A 0.95 1 8
0◦ vs. 1/16◦ 0.10A 0.47 1 8
0◦ vs. 1/32◦ 0.05A 0.24 1 8
0◦ vs. 1/64◦ 0.02A 0.12 1 8
0◦ vs. 1/128◦ 0.01A 0.06 1 12
0◦ vs. 1/256◦ 6.7mA 0.03 1 12

Table 3.3: Accuracy results for polarization angle differences of 0◦ vs. 1/8◦ to 0◦ vs.
1/256◦

16



Figure 3.5: Comparison of learning curves for training of 0◦ vs. 1/32◦ to 0◦ vs. 1/256◦.
The top left is for 0◦ vs. 1/32◦, the top right is 0◦ vs. 1/64◦, the bottom left is 0◦ vs.
1/128◦, and the bottom right is 0◦ vs. 1/256◦.

3.2 Multiclass Image Classification

To enhance the efficiency of our image classification process, we configured our al-

gorithm to accomodate multiclass image classification, specifically to classify three

different polarization angles. The approach is similar to the binary classification, al-

though this model now involves three different categories for the training and testing

set. Our first training attempt involves classifying 0◦ vs. 1◦ vs. 2◦, where we used a

sample size of 500 (400 for training and 100 for testing) for each angle. Our algorithm

returned a 100% accuracy using our initial convolution filter configuration and shows

an ideal training plot (as shown in Fig. 3.6). We also visualized the confusion matrix,

17



Figure 3.6: Multiclass training plots and confusion matrix visualization for 0◦ vs. 1◦

vs. 2◦.

showing that each test images were successfully classified and labeled as the actual

polarization angle. For example, in the 0deg class, the model predicted ’true’ (true

positive) for the actual 0deg images 100 times, and predicted the rest of the 200 im-

ages of 1deg and 2deg as ’false’ (true negative). This suggests a perfect classification

for the 0deg class.

With the newly updated convolution filter configurations, we also classified polar-

ization angles of 0◦ vs. 1/8◦ vs. 1/32◦ and 0◦ vs. 1/64◦ vs. 1/128◦. For these smaller

angles, we used a sample size of 1000 (800 for training and 200 for testing). The

resulting training plots and confusion matrix are shown in Fig. 3.7. We can see that

for each polarization angle, the algorithm successfully classified the actual 200 images

to the correct category. This results in an output accuracy of 1 for both attempts.

18



Figure 3.7: Multiclass training plots and confusion matrix visualization for 0◦ vs.
1/8◦ vs. 1/32◦ (top) and 0◦ vs. 1/64◦ vs. 1/128◦ (bottom).
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Chapter 4

Conclusion

Our training algorithm successfully detected a change in polarization as small as

1/256◦ or 0.0039◦, corresponding to a magnetic field of 0.03mT, with 100% accuracy.

Throughout the semester, we also developed an optimum data collection process,

which includes:

• Collecting a large sample size of 100 (splitting 800 for training and 200 for

testing set)

• Rescaling the input images from 1944 x 2592 to 256 x 320 matrices to reduce

computational time

• Normalizing the images so their matrix entries fall between 0 and 1

• Using specific learning parameters (setting the learning rate to 0.0001 and the

convolutional filter sizes to the specified values)

We also successfully configured our algorithm to perform multiclass image classifica-

tion, with it returning a 100% accuracy for angles as small as 0◦ vs. 1/64◦ vs. 1/128◦.

Future work includes further optimizing the algorithm to detect even smaller changes

in polarization angle for a more sensitive magnetic field measurement. This could be

20



done by optimizing the learning parameters, improving the quality of the data, or

using more complex machine learning models.
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