
Conservation of Orbital Angular
Momentum in Degenerate Four-wave

Mixing via Rubidium Vapor

A thesis submitted in partial fulfillment of the requirement
for the degree of Bachelor of Science with Honors in

Physics from the College of William and Mary in Virginia,

by

Kangning Yang

Accepted for Honors

Advisor: Prof. Irina Novikova

Prof. Keith Gri�oen, Physics

Prof. Anya Lunden, Linguistics

Williamsburg, Virginia
May 9 2020



Contents

Acknowledgments iii

List of Figures ix

Abstract v

1 Introduction 1

2 Theory 3

2.1 Four-Wave Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 General Description of FWM . . . . . . . . . . . . . . . . . . 3

2.1.2 Classical Description of FWM . . . . . . . . . . . . . . . . . . 5

2.1.3 Non-degenerate and Degenerate FWM . . . . . . . . . . . . . 7

2.2 Orbital Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Brief History of OAM . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 LG Modes and Phase Singularity . . . . . . . . . . . . . . . . 14

2.2.3 Interference of l modes . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Generation of Helical Wave Front Beams . . . . . . . . . . . . 16

2.2.5 Conservation of OAM in FWM . . . . . . . . . . . . . . . . . 18

3 Experimental Arrangement 19

3.1 Beam preparation section . . . . . . . . . . . . . . . . . . . . . . . . 19

i



3.2 Stokes analysis section . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Rubidium Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 25mm natural abundance (30%87Rb + 70%85Rb) cell . . . . . 22

3.3.2 25mm 87Rb cell . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.3 75mm 87Rb + 2.5Torr Ne Cell . . . . . . . . . . . . . . . . . . 23

4 Stokes Optimization 24

4.1 Laser Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Polarization of probe . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Cell Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Petal Analysis 30

5.1 Mode Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Mode decomposition program . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Results of petal analysis . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Computational Simulation 37

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3 Stokes and probe profile . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.4 FWM e�ciency under di↵erent probe size . . . . . . . . . . . . . . . 44

6.5 p mode information preservation . . . . . . . . . . . . . . . . . . . . . 45

7 Conclusions and Next Steps 53

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2 Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A Public Abstract 55

ii



Acknowledgments

I would like to first thank my advisor Professor Irina Novikova, who not only

taught me how to do physics but also how to be a person, penetrating but not bit-

ing, easy-going but not conforming. I would also like to thank my lab partner Hana

Warner, without whom this experiment cannot be done. I enjoyed every second work-

ing with her. Her experimental intuition, creativity, and perseverance is something I

always admire and try to catch up. I would like to thank members of Quantum Optics

group at W&M who I can always rely on, especially Professor Eugeniy Mikhailov,

graduate student Nik Prajapati and Savannah Cuozzo for their tireless advice. Fi-

nally I would like to thank my parents and my fiancée Shinong, for always supporting

me and making me feel at home even when I am on the other side of the planet.

iii



List of Figures

2.1 Schematic representation of non-degenerate FWM . . . . . . . . . . . 4

2.2 Common line up of fields in FWM. Right side shows the closed triangle

of ~k vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 sinc function, x-axis is one half of the phase mismatch times the length

of the cell. It drops very quickly from the phase-matched position . . 8

2.4 Double-⇤ non-degenerate FWM scheme of 133Cs used in Ma et al.,

the hyperfine splitting between the two ground state is 9.2GHz. � is

one-photon detuning while � is the two-photon detuning. . . . . . . . 9

2.5 Three di↵erent experimental setup for the generation of probe in Ma et

al. and their corresponding beat signal bandwidth. It determines how

well the probe is locked with respect to the pump. (a) uses a separate

source; (b) uses a PLL; (c) uses EOM. Only probe generated by EOM

is well locked in frequency and phase, with a linewidth of 1Hz. . . . . 10

2.6 Our degenerate FWM level diagram of D1 line in 87Rb, all of the fields

are the same frequency. Pump and probe has orthogonal polarization,

Stokes polarization is the same as the probe. . . . . . . . . . . . . . . 11

2.7 Photons carrying OAM traveling in ẑ direction. OAM(~L) points in the
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Abstract

We present an experimental platform which can generate quantum-correlated

beams with Orbital Angular Momentum (OAM) via degenerate Four-Wave Mixing

(FWM) in Rubidium vapor. We further investigated the conservation of OAM before

and after FWM by performing LG mode decomposition using interferometer. To

compare our experimental result with theoretical prediction, we simulated a simplified

version of our set up. Moreover, we used this toy model to study the conservation of

radial and angular intensity profile through changing parameters limited by our set

up. In general, we found that FWM preserves most information consisted in OAM,

but has a rather loose control over the information stored in radial profile.



Chapter 1

Introduction

In 1992, Allen, Beijersbergen, Spreeuw, and Woerdman published their semi-

nal paper, in which they first introduced the concept of Orbital Angular Momentum

(OAM) of light. [1] The discovery that photons, just like macroscopic objects, could

carry orbital angular momentum in addition to spin angular momentum led to a

deeper understanding of photon. With its unique phase spacial profile, OAM has

soon become one of the most interesting transverse optical modes in research. In par-

ticular, the Laguerre-Gauss (LG) spatial mode of light, which carries a well-defined

OAM of lh̄ per photon has a wide range of applications in both classical and quantum

communications. Since LG modes can form an orthogonal set in Hilbert space, in

theory there are potentially unlimited number of OAM states. This extra information

storage capacity can hugely improve the bandwidth of communications. The perfor-

mance of communication system based on OAM evolved rapidly, from 8 OAM states

in a telescope-to-telescope optical link in 2004 [2] to 200Gbit data rates in free space

in 2017 [3].

In order to further push the limit of OAM based communication, we turn to the

idea of entangled photon. When two photons are entangled, their quantum states

are inseparable regardless of the distance between them[4]. This has the potential

to improve the distance limit of OAM transmission. Such entangled photons can be
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prepared by phase-matched nonlinear optical processes. Generation of beams with

entangle OAM states has been exhibited via sum-frequency generation (SFG), para-

metric down conversion (PDC), and four-wave mixing (FWM) in semiconductors[5].

In our experiment, we will generate and study the OAM beams via FWM in

Rubidium (Rb) vapor. Comparing to solid state process, the advantage of using

atomic vapor is that the process is usually more e�cient and requires lower light

intensity. Thus the first part of the experiment is to quantitatively study the transfer

of OAM between beams in a degenerate FWM scheme. The second part of our

experiment looks deeper into the propagation of LG spacial modes in FWM, especially

around the focus of the beam. So far when studying nonlinear optical processes,

most theory makes the assumption that the size of the beams changes slowly inside

the nonlinear medium, and thus treat the beams as plane waves. However, in our

experiment, LG beams have a more complicated phase profile and cannot be treated

as plane waves. In particular, in addition to a phase depending on OAM, there is

another phase, known as the Gouy phase, which changes sharply around the focus of

the beam. Our goal is to determine how the change in Gouy phase a↵ects the transfer

of OAM, and more generally, the propagation of LG modes in nonlinear light-matter

interactions.
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Chapter 2

Theory

2.1 Four-Wave Mixing

2.1.1 General Description of FWM

FWM is a third order nonlinear optics process which involves 2 input fields

and 3 output fields. A schematic representation of non-degenerate FWM is shown

in Fig. 2.1. Notice that on the left side there are 2 arrows, but they share the same

frequency !pump. This strong field, also known as the pump, is used twice in the input,

indicated by !pump1 and !pump2 respectively. If now we send in another weak field,

also known as the probe, with frequency !probe, then FWM process will cause the

generation of a third field, the Stokes field, with frequency !s. Meanwhile, probe field

is also amplified. If we think from the perspective of photon, then what happened in

FWM is very simple. Two photons of !pump are absorbed by the nonlinear medium,

and two photons, one !probe and the other !s are generated. Since the conversion

is instantaneous, this means that the two photons must be generated at the exact

same time and are correlated. Moreover, this process has to obey the conservation of

energy and conservation of momentum. Thus frequency and ~k vector of the Stokes

field has to obey the following relationship:

3



Figure 2.1: Schematic representation of non-degenerate FWM

!s = 2!pump � !probe (2.1a)

~ks = 2~kpump � ~kprobe (2.1b)

Fig. 2.2 shows a common set-up of ~k vectors in FWM process. On the left side,

pump field comes in along horizontal axis and the Probe field come in the nonlinear

medium at an angle. The Stokes field is thus generated after the cell, on the other

side of pump field. If we inspect closer and connect the ~k vectors of each field, we

would get a closed vector triangle as on the right side of Fig. 2.2.

Figure 2.2: Common line up of fields in FWM. Right side shows the closed triangle
of ~k vectors
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2.1.2 Classical Description of FWM

In this section we will derive the spacial and temporal behavior of FWM process

in atomic vapor. We will start by assuming that our fields are plane waves. We will

denote our pump field as !c and probe field as !p. Thus

~Ec = Ec(r)e
i(!ct�kc·~r)k̂c (2.2a)

~Ep = Ep(r)e
i(!pt�kp·~r)k̂p (2.2b)

~Es = Es(r)e
i(!st�ks·~r)k̂s (2.2c)

Recall that the Maxwell’s equations inside homogeneous matter with no free cur-

rent are:

r · ~E = 0 (2.3a)

r · ~B = 0 (2.3b)

r⇥ ~E = � @

@t
(µ0

~H) (2.3c)

r⇥ ~H =
@

@t
("0 ~E + ~P ) (2.3d)

Taking the curl of Eq. 2.3c and substitute the results with Eq. 2.3c, we get the

following inhomogeneous wave equation:

r2 ~E � 1

c2

@
2 ~E

@t2
= µ0

@
2

@t2
~P (2.4)

~P here is the polarization of the medium. It is determined by the properties of the

medium and describes how the atoms in the medium interact with incoming fields.

Generally, polarization can be expressed in a Taylor series expansion:

Pi = "0[�
(1)
ij Ej + �

(2)
ijkEjEk + �

(3)
ijklEjEkEl + ...] (2.5)
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where Pi is the ith component of the ~P . Likewise, Ej is the jth component of

the ~E field and �
(n) is the nth order susceptibility of the medium. Summation over

repeated indices are assumed. As we can see from the number of indices for each

susceptibility, generally speaking, as nth order susceptibility is a n + 1 order tensor.

Since in a linear medium, only the first term survives, it is also called the linear

response. All of the nonlinear optical processes take benefit from the higher order

terms. Since medium can have di↵erent response to di↵erent frequency waves, in

most cases susceptibility is frequency dependent.

In the case of atomic vapor, it is possible for us to assume inversion symme-

try. Therefore when we invert the sign of the electric fields, the second term in the

polarization vector should also be the reverse. Thus we have:

�
(2)
ijk(�Ej)(�Ek) = ��

(2)
ijkEjEk (2.6)

That is, in atomic vapor, the second order susceptibility is always zero. Thus

nonlinear polarization vector mainly depends on the third order susceptibility. More-

over, in the case of FWM, we already know the relationship between the frequencies

between pump, probe, and Stokes field, described by Eq. 2.1a, the ~P vector for our

Stokes field can be written as:

~P
s
i = 3 �

(3)
ijkl E

c
iE

c
j (E

p
k)

⇤
e
i(2!c�!p)t e

i(2~kc�~kp)·~r (2.7)

where (Ep
k)

⇤ is the complex conjugate of the pth component of the probe field.

Moreover, after we plug Eq. 2.7 back into Eq. 2.4, we can use it to solve for the

spatial behavior of the Stokes field. Here we will use an undepleted pump and probe

assumption, presuming that little photon participate in FWM and the intensity of

pump and probe does not change in the direction of propagation. Without explicitly

showing the full mathematical deduction, we will get the following equation, where c

is a constant.
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@

@r
Es(r) = c e

i(2~kc�~kp�~ks)·~r (2.8)

Define 2~kc � ~kp � ~ks as �k, the phase mismatch. Using the initial condition that

Es(0) = 0, and the boundary condition that the atomic vapor has a finite length in the

direction of Stokes propagation L, then the power of our Stokes field is proportional

to the square of a sinc function.

Ps(L) / sinc
2(
1

2
�kL) (2.9)

A figure of Eq. 2.9 is shown in Fig 2.3. As we can see from the graph, the power

drops really quickly with respect to the length of the medium L. However, under

the phase matching condition where �k = 0, regardless of L, the sinc function will

always equal to 1, the maximum. Therefore FWM has its maximum e�ciency under

phase matching condition, �k = 0, therefore

~ks = 2~kc � ~kp (2.10)

2.1.3 Non-degenerate and Degenerate FWM

Depending on the frequency of pump and probe, FWM can be further di-

vided into 2 subcategories, namely non-degenerate FWM and degenerate FWM.

Non-degenerate FWM is usually more often used in experiment via atomic vapor.

However, in our experiment, we adopted a degenerate FWM scheme, in which the

frequency of the pump and the probe are the same. In this section, I will compare

the two types of FWM and discuss why degenerate FWM is especially interesting to

us, and how it is di↵erent from non-degenerate FWM.

We will begin our discussion of non-degenerate FWM by at how it is achieved

experimentally. This part of my discussion is based on the results in R.Ma et al.

7



Figure 2.3: sinc function, x-axis is one half of the phase mismatch times the length
of the cell. It drops very quickly from the phase-matched position

In their set-up, they use a double-⇤ scheme in the D1 line of 133
Cs, as shown in

Fig. 2.4. The reason non-degenerate FWM is called this way is because the pump

and probe has di↵erent frequency. In this configuration, pump (red line) is tuned to

the transition between 6S1/2, F = 3 to 6P1/2, F
0 = 4, while probe is tuned to another

transition, between 6S1/2, F = 4 to 6P1/2, F
0 = 4. The hyperfine splitting between the

two ground levels is 9.2GHz. However, if we tune the laser exactly to the transition

frequency, then we would a huge portion of photon being absorbed by atoms due

to the e↵ect of optical pumping. Therefore usually we detune both beam from the

transition frequency. � is called one-photon detuning, shifting the transition level

of one pump photon, while � is called two-photon detuning because it detunes the

transition level of both probe and the other pump photon.

The advantage of non-degenerate FWM is obvious: by detuning from the ab-

8



Figure 2.4: Double-⇤ non-degenerate FWM scheme of 133Cs used in Ma et al., the
hyperfine splitting between the two ground state is 9.2GHz. � is one-photon detuning
while � is the two-photon detuning.

sorption line, more photons can possibly participate in FWM process. However the

challenge is also demanding. As shown in Eq. 2.2, all the fields in FWM are locked

in phase and frequency. Therefore in order to generate high quality correlated fields

(narrow bandwidth of beat signal between pump and probe), one must think care-

fully of how the probe frequency is generated. This often means some methods of

phase-locking and frequency-locking. In R.Ma et al., they tried 3 di↵erent ways of

generating probe: a separate laser source, a phase-locking loop (PLL), and an electro-

optic modulator (EOM) which generates side band of the pump laser. Their set-up

and the bandwidth of beat signal in each method is shown in Fig. 2.5. Only by using

EOM, they were finally able to generate a high quality probe (bandwidth of 1Hz)

that can be used in their intensity-squeezing experiment.

9



Figure 2.5: Three di↵erent experimental setup for the generation of probe in Ma et

al. and their corresponding beat signal bandwidth. It determines how well the probe
is locked with respect to the pump. (a) uses a separate source; (b) uses a PLL; (c)
uses EOM. Only probe generated by EOM is well locked in frequency and phase, with
a linewidth of 1Hz.

On the other hand, degenerate FWM uses the same frequency for both pump and

probe. In our experiment, we use 87 Rb atomic vapor as medium, and we lock our

laser to the transition 5S1/2, F = 2 ! 5P1/2, F
0 = 1 transition, shown in Fig. 2.6.

(Reasons for this choice will be discussed later in experiment and result section.)

Note that in degenerate FWM, the frequencies of all fields are the same. This

brings pros and cons. The benefit is that we can use one source for both pump

and probe beam, without having to worried about frequency and phase-locking. The

drawback is that in order to the phase matching condition in Eq. 2.10, the ~k vector

triangle as shown in Fig. 2.2 will be very flat. Thus the angular separation between

three beams will be very small. This makes it harder for us to separate the beams

and send only Stokes for detection. One solution to this problem is to separate the

polarization of the beams. If the polarization of probe and pump beam are orthogonal,

there will be less interference, as well as more angular separation between beams, since

~k is generally a function of polarization as well as frequency.

10



Figure 2.6: Our degenerate FWM level diagram of D1 line in 87Rb, all of the fields are
the same frequency. Pump and probe has orthogonal polarization, Stokes polarization
is the same as the probe.

Another drawback of degenerate FWM is that while in non-degenerate FWM,

one can reduce absorption by detuning, it is impossible to do the same in degenerate

FWM, since change in the frequency of laser would result in change in all fields.

Therefore we have to find a balance between absorption and FWM process. This

requires a fine calibration of the temperature of the Rb cell.

2.2 Orbital Angular Momentum

2.2.1 Brief History of OAM

It is well known that light, a form of electromagnetic wave, can carry linear

and angular momentum. In quantum mechanics, we further found out that linear

momentum is quantized in the unit of h̄. A photon with ~k0 vector carries a linear

momentum of h̄~k0. Moreover, in 1936, Beth published his paper, stating that if
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the light is circularly polarized, then it can also carry an angular momentum of ±h̄

depending on the spin of photon. This part of angular momentum is called spin-

angular momentum (SAM).

Figure 2.7: Photons carrying OAM traveling in ẑ direction. OAM(~L) points in the z
direction as well. Therefore there must be velocity component in xy plane. Moreover,
the Poynting vector should behave like a spiral as shown on the right side.

The origin of OAM, strangely, is easier to understand than that of SAM. As the

name suggests, OAM describes the part of angular momentum due to the photon’s

rotation around its propagation axis. The direction of OAM points in the direction

of propagation. Imagine a group of photons traveling in the ẑ direction, as shown

in Fig. 2.7. In order to have an angular momentum in the ẑ direction, it must have

linear momentum component in the xy plane. In terms of ~E and ~B field, the angular

momentum density ~j can be expressed as

~j = ~s⇥ ( ~E ⇥ ~B) (2.11)

In cylindrical coordinate, for ~j to have component in ẑ direction, it follows that ~E

field or ~B field needs to have component in ẑ direction as well. Therefore the Poynting

vector of light carrying OAM should behave like a spiraling curve as shown in Fig. 2.7.

Since plane waves have Poynting vector pointing straightly towards the direction of

propagation, it can never carry OAM. Contrastively, if there is an azimuthal phase
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dependence on phase front of the wave, eil�, and hence the Poynting vector inclined

with respect to the beam axis, then light can carry OAM. Fig. 2.8 shows examples of

such helical phase fronts, with l = 1, 2, 3 and plane wave (l = 0).

Figure 2.8: Examples of wave with helical wave fronts, the phase of di↵erent azimuthal
angle is di↵erent, shifted by e

il�. (a) is a plane wave (l = 0), (b), (c), and (d) has
l = 1, 2, 3 respectively

In 1992, L.Allen et al. published their break through paper, in which they proved

that just like linear momentum and SAM of light, optical OAM is also quantized in

the unit of h̄, light that has a azimuthal phase dependence e
il� carries OAM of lh̄.

(We will show a simple version of proof in Sec. 2.2.4.) Moreover, they showed that

light with Laguerre-Gaussian amplitude profile always have a well-defined OAM. In

fact, these profiles form a complete set of orthonormal basis. We refer to them as

Laguerre-Gauss (LG) modes. In theory, any beam carrying OAM can be decomposed
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into linear combinations of di↵erent LG modes.

2.2.2 LG Modes and Phase Singularity

The electric field for LG modes has the following expression

LG
l
p(s,�, z) =

C
l
p

w(z)
[
s
p
2

w(z)
]|l|L|l|

p (
2s2

w2
)e�

s2

w2 e
ikz

e
il�
e
�s+�G (2.12)

where C
l
p =

p
2p!/⇡(p+ |l|)!, L|l|

p is the associated Laguere polynomial. w(z) is the

1/e2 beam radius at z. It is a function of z, w(z) = w0(1 + (z/zR)2)1/2. w0 is the

beam waist and zR is the Rayleigh range. They are determined by the property of

the system. e
il� is the azimuthal phase dependence that give rise to OAM. There

are two more phases which also influence the field, namely the spherical phase front

�S = ks
2
z/(2(z2 + z

2
R)) and the Gouy phase �G = �(2p+ |l|+ 1)arctan(z/zR).

Figure 2.9: Examples of LG modes. FIrst row is di↵erent p modes, second row is
di↵erent l modes, third row is the coherent superpositions of di↵erent modes.
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The intensity profile for di↵erent LG modes is shown in Fig. 2.9. When l = 0 (no

OAM), LG modes are essentially modified Gaussian beams, with radial ring structures

corresponding to the p number. When p = 1, there is one ring around the center,

when p = 3, three rings, etc. Therefore p is also called the radial index. Any paraxial

beam with no OAM can be written as a combination of p modes only. On the other

hand, when p = 0, we can see that the intensity in the center of the beam becomes

zero. This is called the phase singularity. The size of phase singularity grows as the

l number increases. This is because when we are close to the center of the beam,

phase changes rapidly even in a small angle. As a result, all of these phases mashed

up together and canceled each other. p mode beams are also referred as doughnut

beam because of their shape.

2.2.3 Interference of l modes

Recall that in the last row Fig. 2.9, superposition of multiple LG modes gives us

various petal structure. This is due to the interference between LG modes. Since our

experiment involves mainly beam of p = 0, we will only discuss l modes interference,

which corresponds to the first 2 graphs in Fig. 2.9(c).

Imagine two beams carrying di↵erent OAM generated from the same source, travel

the same path, and are superposed at a certain location zS along the propagation

axis far away from the source. Therefore their beam waist w(z) will be the same, and

spherical/ Gouy phase are necessarily zero since z >> ZR. From Eq. 2.12, we know

that the two field, LGl1
0 and LG

l2
0 at zS can be expressed as:

LG
l1
0 (s,�, zS) = D

l1
0 (s, zS)e

� s2

w2 e
il1� (2.13a)

LG
l2
0 (s,�, zS) = D

l2
0 (s, zS)e

� s2

w2 e
il2� (2.13b)

where D
l
0(s, zS) is some constant determined by s and zS. When we superpose
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these two waves, we will get the result total field at azimuthal angle � will be pro-

portional to the interference term:

Etotal(�) / cos(
|l1|+ |l2|

2
�) (2.14)

The intensity of the total field will depend on the azimuthal angle ✓. And destruc-

tive interference happen in between 0 and 2⇡. The number of destructive interference

angle is decided by the sum of OAM of two beams. One can easily prove that for two

beams with l1 and l2 respectively, there will be |l1|+ |l2| destructive angle. Thus the

interference pattern will be divided in to |l1|+ |l2| petals, as shown in Fig. 2.9

2.2.4 Generation of Helical Wave Front Beams

In this section I will discuss two methods that we used to generate beams with

helical wave fronts. However, my partner Hana Warner will provide a more detailed

description of SLM and how it is programmed. Please refer to her thesis on that part.

Vortex mask

We first tried to use a vortex mask to generate beams with helical wave front.

Fig. 2.10 shows a simple sketch of vortex mask. Basically it is an optical element with

helical surface. The thickness of the mask increases with the azimuthal angle. It is

designed such that when we look at the thickness of this mask from 0 to 2⇡, then the

di↵erence in thickness s = l�/(n� 1) where � is the wavelength of incident light, and

n is the refractive index of the mask.

If a light with linear momentum p = h̄k0 = h̄2⇡/� incident perpendicularly to the

flat side of vortex mask at radius r as shown in Fig. 2.10, then according to Snell’s

law, it will be refracted at an angle ✓ with respect to perpendicular direction.

sin↵ · n = sin(✓ + ↵) · 1 (2.15)
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Figure 2.10: Structure of vortex mask. The thickness varies by azimuthal angle
gradually. It is designed for particular wavelength and particular l mode. Passing a
plane wave to the vortex mask will give a wave carrying OAM of lh̄ per photon.

in which the incident angle ↵ at radius r is

tan↵ =
s

2⇡r
=

l�

2⇡r(n� 1)
(2.16)

Assume that both ↵ and ✓ are small angles, we will get

sin ✓ = ✓ =
l�

2⇡r
(2.17)

On the other hand, the OAM of the photon can be expressed as

~L = ~r ⇥ ~p = rp sin ✓ (2.18)

substitute sin ✓ into Eq. 2.19, we can get

~L = rp sin ✓ = rh̄
2⇡

�

l�

2⇡r
= lh̄ (2.19)
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Therefore after passing a vortex mask designed for l mode, a photon will carry an

OAM of lh̄.

2.2.5 Conservation of OAM in FWM

When we mix pump and/or probe with OAM in FWM process, we can predict

the possibility of getting a certain LG modes of Stokes field. Since LG modes forms a

complete orthonormal base, we can decompose the input field into linear combination

of LG modes. However, we should pay attention here that since Stokes and the

amplified probe are generated simultaneously, when we determine a LG mode for

Stoke, we are also determining the LG mode for probe, since OAM has to be conserved

during the FWM process. Therefore we should denote the coe�cient of getting Stokes

with ls and ps as the following:

c
ls,lp
ps,pp =

Z L/2

�L/2

Z R

0

Z 2⇡

0

(LGlc
pc)

⇤(LGlc
pc)

⇤
LG

ls
psLG

lp
pp s d� ds dz (2.20)

If we take out � terms and do the integral

c
ls,lp
ps,pp /

Z 2⇡

0

e
�i(2lc�ls�lp)� d� (2.21)

Therefore the coe�cient equals to zero when 2lc� lp� ls 6= 0. In other case, FWM

only generate modes in which OAM is conserved.

ls = 2lc � lp (2.22)
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Chapter 3

Experimental Arrangement

The experimental setup is shown in Fig. 3.1. Before diving into the characteristic

of each component. I want to first give an overall description of the system. The whole

setup can be divided into two sections: the beam preparation section before the cell

and the Stokes analysis section after the cell. While I mainly worked on aligning the

Stokes analysis section, my partner Hana worked mainly on the Beam preparation

section.

3.1 Beam preparation section

In the beam preparation section, we send our laser signal through fiber and let

it pass a polarized beam splitter (PBS), where it is then split into two parts: the

strong pump reflects o↵ the PBS, while the weak probe passes through PBS and hits

SLM. The phase profile of probe is modified upon hitting SLM and it starts to carry

OAM.

It is worth noticing that in our experiment, only probe carries OAM, while pump

is always simply a Gaussian beam with no OAM. Since one goal of our experiment

is to study the e↵ect of focus (and Gouy phase) on the e�ciency of FWM, the two

beams may also pass through some lens to add e↵ect of focusing before they enter

the Rb cell. The setup shown in Fig. 3.1 is used in one part of our experiment (in
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Figure 3.1: The setup of our experiment. It is mainly divided into two sections: beam
preparation and Stokes analysis. Beams are color coded, with blue for pump, green
for probe, and yellow for Stokes.

Sec. 5.2) where we used a telescope to blow up the size of the pump, as well as a

f = 750mm lens to slowly focus the probe. The focus condition of our pump and

probe for each step of our experiment will be noticed later when we discuss the result.

3.2 Stokes analysis section

After the cell, if the FWM gain is good enough, the Stokes field will be gener-

ated. In order to analyze the Stokes, our job is to first get rid of signal from pump

and probe. We use another PBS (later polarizer) to block most of the pump signal.

As for the probe, since it is further away from the Stokes, we mostly uses an edge

mirror or pin hole to physically block its signal.

There are three ways to analyze the Stokes signal. First, and the most straight-
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forward way is to observe it on a CCD camera. In this case, usually there is a weak

pump leakage in the middle. On its sides, we will find Stokes and probe signal. An

example of camera image before and after cell is shown in Fig. 3.2. Camera can give

us a rough estimation on the intensity and size of the beams we have, however it can

not provide us with precise measurement. Thus our second way of analysis is to use

a photodetector and record the power of Stokes field in the sweep range of laser.

Figure 3.2: Example images we observed on CCD camera before and after cell. Probe
carries OAM of 2h̄ per photon. The generated Stokes also have phase intensity,
meaning that it carries OAM. However, it is not symmetrical, meaning that there
are multiple l modes in superposition. Proportion of each mode needs to be send to
interferometer for further analysis.

Power measurement is critical because it tells us the e�ciency of FWM in our

system. However, it can not tell us what LG modes Stokes are generated in, and
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what proportion each mode is. For the mode analysis, we rely on the mode analyzer,

which is a Zach-Zehnder interferometer with a Dove prism in one arm. The detail of

the analyzer will be described in detail in Sec. 5.1

3.3 Rubidium Cell

During the process of experiment, we have tried several di↵erent Rb cells. Each

has their own merit and limit. Here is a very brief description of their properties and

the experiments we did on them.

3.3.1 25mm natural abundance (30%87Rb+ 70%85Rb) cell

We used this cell at the beginning of our experiment to check which transition

has the best FWM e�ciency. We sweep our laser and try to observe at what frequency

we found Stokes signal. We switched to the 25mm 87Rb cell after we found only

F = 2 ! F
0 = 1 or 2 transition in 87Rb gives us strong FWM signal. The detail

procedures and finding of this experiment can be found in Sec. 4.1.

3.3.2 25mm 87Rb cell

We used this cell to replace the natural abundance cell. The advantage of this

cell is that it is short, and thus relatively small absorption e↵ect. On the other hand,

short cell also means that there is less distance for overlap between the beams, and

thus less FWM gain.

We did several parts of experiment using this cell. First is Stokes optimization,

including laser frequency, field polarization, and cell temperature. Data and results

for this part is discussed in Chap. 4.

Another attempt we tried in this cell is the preliminary focusing test to observe

the e↵ect of Gouy phase. We placed a f = 75mm lens in front of the cell such that
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its focus is at the center of the cell. We want to see if can still have FWM signal with

pump and probe focused, since the focusing in general will give us a wide range of ~k

vectors and make it harder to achieve phase-matching condition.

We did not succeed in finding the Stokes. Of course we did several optimization

during the process. The description of our procedure and finding will be discussed

in Sec. ??. After all the optimizations we tried, we still was not able to find Stokes

signal. Therefore we decided to switch to the 75mm 87Rb + 2.5Torr Ne Cell.

3.3.3 75mm 87Rb+ 2.5Torr Ne Cell

The advantage of this cell is that it is long and filled with bu↵er gas. Bu↵er gas

can decrease absorption, thus letting more photons participate in FWM. Also, since

the cell is longer, pump and probe will have more overlap, increasing the chance of

FWM. However there is downside as well. Longer cell means that absorption, despite

bu↵er gas, will still be stronger than the previous 25mm cell.

To our disappointment, we were still not able to find Stokes with this new cell.

However, when we took out the lens, the Stokes is generated. We decided to use

this cell anyway. So we optimized its temperature for this longer cell. This time,

we tried to focus only probe with a long focal length lens of f = 750mm. We were

able to find Stokes this time. We passed our Stokes signal to the M-Z interferometer

and performed LG mode decomposition. Results of decomposition can be found in

Sec. 5.2.
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Chapter 4

Stokes Optimization

The first step in our experiment is to optimize the Stokes signal we can get.

There are three parameters that we considered, namely: Laser frequency, polarization

of probe, and cell temperature. These optimization are done when pump and probe

are both collimated. (No lens in the beam preparation section.) Neither of the beams

carry OAM. The pump power is 10.8mW, while the probe power is 2.6mW.

4.1 Laser Frequency

As we have discussed in Sec. 2.1.3, degenerate FWM is very sensitive to laser

frequency. However since frequency in all fields are the same, we do not need to

detune pump and probe separately. Thus the laser frequency optimization is also

rather simple. We just have to sweep our laser and lock our laser at where the FWM

gain is the largest.

We used the natural abundance cell described in Sec. 3.3.1 at the beginning of

optimization. We mainly looked at the F = 2 ! F
0 = 1 or 2 transition in 87Rb and

F = 3 ! F
0 = 2 or 3 transition in 85Rb. We recorded the probe spectrum with and

without pump, If FWM happens, then there will certainly be less absorption of the

probe due to the existence of the pump, since probe will be amplified in FWM. In

our case, we observed an obvious decrease of absorption in the transitions described
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above.

However, there is no guarantee that Stokes is always generated even when absorp-

tion decreased. Because another e↵ect in play is that the pump, with its stronger

power, will pump electrons in atom into states inaccessible to probe. (Inaccessible be-

cause probe and pump has di↵erent polarization, thus have di↵erent selection rule in

which hyperfine level they can pump electrons onto.) Therefore what we did is to lock

at our lasers at each of these transition frequency and look at the signals on camera

to check whether if Stokes is generated. Overall, we found that F = 2 ! F
0 = 1 or 2

transition in 87Rb has a much stronger signal than F = 3 ! F
0 = 2 or 3 transition

in 85Rb. In fact, the power of the later one was to weak that it is hardly detected by

CCD. This motivated us to switch the 25mm 87Rb only cell.

After switching the cell, the Stokes signal is much stronger. (Since there was only

30% 87Rb in natural abundance cell). We can now monitor the Stokes power on

the photodetector through an oscilloscope, and record the Stokes power and pump

leakage during the sweep. An example of the data for laser frequency optimization is

shown in Fig. 4.1.

Pay attention that since we record the data from oscilloscope directly, the x-axis

on graph is time. However, since we were sweeping our laser, the laser frequency

also increase with time. As our Theory has predicted, the frequency of the peak is

very close to that of atomic transition. Moreover, from the graph, we see that the

first peak, corresponding to F = 2 ! F
0 = 1 transition has a strong Stokes signal.

Therefore we decide to lock our laser at frequency of the first transition.

4.2 Polarization of probe

Next step we optimized the polarization of probe. To do this we inserted a

quarter wave (�/4) plate before the probe enters the cell. The setup for this part of
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Figure 4.1: Example of Stokes signal on which our laser frequency optimization is
based. The red line is the Stokes signal on oscilloscope and the yellow line is the
pump leakage which we need to subtract. The blue line is the Stokes power. There
are two peaks on the graph, corresponding to F = 2 ! F

0 = 1 and F = 2 ! F
0 = 2

transition. We decided to lock our laser on the first transition since Stokes signal is
much stronger.

the experiment is shown in Fig. 4.2

The quarter wave plate generally will change the polarization of linearly polarized

light into elliptical polarization. When its main axis is parallel to that of linear

polarization direction, light will remain linearly polarized. Whereas when it is at

45 degrees to the linear polarization position, it will change the light into circular

polarization. In our experiment, we recorded two power measurements. The first

is Stokes power in di↵erent probe polarization. Second is the probe power after it
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Figure 4.2: Setup for polarization optimization experiment. An additional �/4 plate
(QWP) is inserted in probe. A PBS is put after the cell.

pass through PBS. This is used as a sign to tell which angle of the QWP is linear

polarization. Since only light from the original linear polarization will pass PBS, we

would assume any elliptical polarized light has a smaller portion passing through PBS.

Therefore the angle when probe power is maximum corresponds to linear polarization.

Figure 4.3: Recorded Stokes power spectrum over a range of frequency sweep. Each
line represents a di↵erent angle of QWP. (0� to 120� in a 10� step)

Fig. 4.3 shows the power of Stokes at di↵erent QWP angles. We started from 0�

to 120� in a 10� step. After that, we used a Matlab program to select 2 maximum

values from each curve, one for each peak. Then we plotted these maximum values
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against the QWP angles. We also plotted the probe power as reference. It is shown

in Fig. 4.4

Figure 4.4: Maximum Stokes power in each QWP angle. The blue curve is the
maximum value in the first peak, and red curve corresponds to the second peak in
Fig. 4.3. Yellow curve is the probe power. We found that Stokes has power maximum
when probe is linearly polarized. (maximum probe power at around 60 degree)

From Fig. 4.4 we can see that Stokes power has maximum when probe is linearly

polarized, since probe power reaches maximum when light is linearly polarized. (In

our case, when QWP is at 60 degree.) Another observation is that regardless of

polarization, the maximum of peak 1 (F = 2 ! F
0 = 1), is always larger than that

of peak 2 (F = 2 ! F
0 = 2). This also confirmed that we should lock our laser at

the first transition.
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4.3 Cell Temperature

Our last optimization is on the temperature of the cell. Higher temperature

will increase the nonlinear susceptibility �
(3) of our medium, however it would also

increase the absorption. Therefore our job is to find an optimal temperature that

balance the two e↵ects and provides us with the strongest Stokes signal. The result

is plotted in Fig. 4.5. We optimized out cell temperature to 69�C.

Figure 4.5: Stokes power against cell temperature. At 69�C, Stokes reaches maximum
and then start to decline.

29



Chapter 5

Petal Analysis

In this section, I will discuss the experiment procedure and results of Stokes

mode decomposition when we used the 75mm 87Rb Cell and a f = 750mm long focal

length lens in probe. The setup of this part of the experiment is the same as shown

in Fig. 3.1. The goal of mode decomposition is to give a qualitative account on what

modes are generated in FWM. We profiled both pump and probe beam in our system.

The pump is a collimated beam with beam waist wc0 = 2.7mm, and probe is a slowly

focusing beam, with beam waist wp0 = 0.35mm at cell center, and a Rayleigh range

of zR = 471mm. Therefore in this condition zR >> L, the length of our cell. The

beam profile around the cell position is shown in Fig. 5.1.

Figure 5.1: Pump and Probe beam profile around the focus position. Probe waist
is wp0 = 0.35. Pump waist is wc0 = 2.7mm. Probe in Rb cell is much smaller than
pump. Also notice that zR >> L.
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5.1 Mode Analyzer

Before discussing the result of the petal analysis. I want to first discuss how the

mode analyzer works. Recall from our setup Fig. 3.1, The Stokes field is generated

after Rb cell and is send to the mode analyzer. It is a Mach-Zehnder interferometer

with one Dove prism in one of the two arms. What Dove prism does is it flips the

image. For a beam with OAM of lh̄, this means that Dove prism changes its OAM

into �lh̄. The structure of Dove Prism is shown in Fig.5.2. Imagine a beam carrying

OAM lh̄ injecting into Dove prism. We will pick one photon which is higher than the

beam axis, traveling towards right and out of the page due to its OAM. Photons in

this beam thus rotates in clockwise direction. As we can see from the figure, after

it travels through the prism, it will be lower than the main axis, but still going out

of the page. Now the photons will be rotating counter-clockwisely around the axis.

Thus OAM also flips sign and change from lh̄ to �lh̄.

Figure 5.2: Side view and top view of Dove prism. It flips the incoming beam, and
outputs mirrored image. For beams carrying lh̄ OAM per photon, Dove prism reverse
its sign and make its OAM �lh̄ per photon.
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We then send the two beams to interfere on a CCD camera. Recall from Sec. 2.2.3,

beams carrying opposite sign of OAM will interfere and gives a petal structure. The

number of petals is determined by the sum of absolute value of the two input beams.

In out case, one arm is the original Stokes with lh̄, the other is the mirrored Stokes

with �lh̄. Therefore the number of petal will always be 2l. Example of interference

pattern and individual arm signal we see on CCD camera is shown in Fig. 5.3. The

Stokes has l = 2 in the input, and we see four petals in the interferogram, just as

we expected. Showing that the dominant mode in this beam is l = 2. However we

cannot tell just from looking at the image, whether if other modes also present in the

Stokes.

Figure 5.3: Example of interference after the M-Z interferometer. Image of individual
arm is shown, as well as the interference pattern when both channel is open. The
input Stokes has l = 2, and we see 2l = 4 petals in the interferogram.
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In order to inspect what modes are generated in FWM process, we take screen-

shots of interferograms and use a Matlab program to further investigate the mode

decomposition.

5.2 Mode decomposition program

We record interferograms of Stokes field like that shown in Fig. 5.3. When

analyzing the mode, we run into the question of whether the generated Stokes is

a coherent superposition of LG modes or a statistical mix of the modes, with no

interference between di↵erent modes. Here we follows the argument from R.F. O↵er

[5]. If Stokes is a superposition of modes, then by interference, components inside

it can interfere with each other. For example, if Stokes is a superposition of l = 1

and l = 2 modes, then l = 1 modes can interfere with l = 2 modes, causing a petal

like pattern with constructive and destructive interference before it even enters the

interferometer. Since we do not see such interference pattern in our mode, we shall

take it as a statistical mixture of di↵erent modes.

Then the interferogram is just simply the intensity sum of the interferogram of

each l mode. Thus the overall intensity on a certain radius r and angle ✓ is:

I(r, ✓) =
X

l

C
l
0R

l
0(r) cos

2(l✓ + �
l
0) (5.1)

where C
l
0 is the relative power in a l mode, Rl

0(r) is the spacial profile of this l

mode, �l
0 is a phase used to adjust which angle ✓ = 0 is set at, since ✓ = 0 on the

camera is not necessarily the same ✓ when Stokes is generated.

In order to fit our data to this model, we need to put our interferogram in a polar

coordinate. This is achieved on computer, where we pick a center for the beam. The

program then performs a Fourier Transform and illustrates the intensity profile of the

beam in this polar coordinate. The program will then compare the intensity profile
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of our beam with those of l mode basis and fit the intensity curve by combination of

these modes. An example of the intensity profile of our beam is shown in Fig. 5.4

Figure 5.4: Intensity profile of the l = 2 Stokes interferogram experimental data. (4
petals because 2l = 4). The blue curve is our data, and red line is the fit of the
program, using intensity profile of pure l modes.

5.3 Results of petal analysis

After running through the fit, the program will tell us what modes are in the

Stokes as well as their corresponding relative amplitude in a bar graph. We run

analysis of our Stokes when we send from l = 1 to l = 5 probe beam into the system.

Fig. 5.5 shows the original interferogram, and the result of mode decomposition of

l = 2 probe beam. Fig. 5.6 shows that of the l = 5 probe beam.

What is interesting about these results is that while we have a rather pure Stokes

signal when l in probe beam is low, the signal becomes more noisy as the input OAM

increases. We have two hypothesis on why this might happen. First is that the probe

signal, since it is also generated by SLM, can be imperfect in the first place. Second

is that this result agrees with the spiral bandwidth broadening reported in R.F. O↵er
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Figure 5.5: The interferogram and mode decomposition result of l = 2. We can see
from the bar graph that l = 2 is the dominant mode, with a small amplitude in l = 1
mode.

[5], in which he stated that when zR/L >> 1, the spread of possible OAM of Stokes

will be larger compared to when zR/L << 1.
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Figure 5.6: The interferogram and mode decomposition result of l = 5. Note that
although l = 5 mode still dominates, other modes has a higher amplitude compared
to l = 2. Especially higher modes like l = 7, 8.
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Chapter 6

Computational Simulation

6.1 Motivation

After confirming OAM conservation in our experiment through petal analysis, we can

conclude that the l mode information is rather well preserved in degenerate FWM.

However, there remain two questions that need answers. First is the e�ciency of the

l mode transition. Our current setup is set at fixed beam radius: 300 µm for pump

and 130µm for probe respectively. It is not necessarily the best option for Stokes

generation. We are curious to see whether if shrinking or blowing up the size of the

probe beam will increase the FWM gain, thus giving us a higher Stokes power that

contains the l mode information.

The second question is whether the information contained in the p mode of LG

mode beams will be preserved after FWM. p mode describes the radial intensity

information and therefore is very sensitive to the beam radius. Like l mode, we

can describe the dominant p mode given the cross-section image of a certain beam.

However, this way it is hard to precisely determine the exact component involved in

the beam. Moreover, petal analysis cannot extract information about p mode. Thus

we need a di↵erent method which can perform p mode decomposition.

It is worth noticing that a critical component to answering both questions is the
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ability to vary the beam size, which is not very easy to implement in our experiment

setup. Therefore in order to gain more freedom in controlling the beam size, we

decided to build a FWMmodel using Mathematica, and run computational simulation

to find answers to these two questions. Another advantage of using simulation instead

of experiment data is that it largely reduced the di�culty of p mode decomposition as

the image we generated will not be influenced by misalignment and possible defects

in lens or camera.

6.2 Theoretical Model

In order to model our experimental setup, which is a complex system with three

di↵erent optical field interacting with atoms inside an atomic vapor cell, we need to

make multiple simplifications to our model. In this section we will start from the

inhomogeneous wave equation which we introduced in Chapter 2, and simplify it to a

set of coupled di↵erential equations that can be solved numerically for FWM process.

For reference, the inhomogeneous equation is restated below again.

r2 ~E � 1

c2

@
2 ~E

@t2
= µ0

@
2

@t2
~P (6.1)

The first approximation which we will make here is to assume that the polarization

vector ~P on the righthand side can be expanded through perturbation theory into:

Pi = "0[�
(1)
ij Ej + �

(3)
ijklEjEkEl + ...] (6.2)

This is a common simplification in non-degenerate FWM. However, we must make

the clarification here since it is not the most precise picture in our degenerate FWM

scheme. In our experiment, the transition in Rb atom is resonantly excited such that

perturbation theory fails to provide an adequate description, and the power series in

Eq. 6.2 does not converge. Linking it back to the physics picture, it is saying that
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the refractive index (third-order susceptibility �
(3)) for the probe and Stokes field is

di↵erent than usual due to the existence of the strong pump field in our experiment.

A more precise treatment for degenerate FWM would involve solving density matrix

using two-level approximation [6]. However, in our toy model, the absolute correct

value of susceptibility is not important. This simplification can be justified as we are

only interested in comparing the relative power of the fields, and the susceptibility

can be treated as a fixed constant.

�
(3) is a fourth-rank tensor, and the value of each of its component is dependent

on the frequencies of the three input fields. However, since the input frequencies of

degenerate FWM are all the same, the expression for polarization vector ~P can be

simplified further to one term using the intrinsic permutation symmetry of degenerate

FWM and the orthogonal polarization of pump and probe beam.

~PStokes = 3�1221[ ~EPump1 · ~EPump2] ~E
⇤
Probe (6.3)

~PProbe = 3�1221[ ~EPump1 · ~EPump2] ~E
⇤
Stokes (6.4)

Eq. 6.1 can be further simplified if we introduce field ~E propagating along z axis.

~E(~r, t) = E(~r?, z)eikze�i!t (6.5)

where E denotes the information contained in the perpendicular spacial profile of

the beam. It can generally depend on coordinates orthogonal to direction of propaga-

tion ~r? (x, y), and z. If we substitute Eq. 6.5 along with the paraxial approximation

(|k@E/@z| >> |@2E/@z2|), Eq. 6.1 will be simplified into

(
@

@z
� i

2k
r2

?)E =
ik

2✏0
P (6.6)
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The second term on the left hand is a Laplacian term which depends on the

perpendicular profile of the beam. When the input wave is a plane wave, meaning

that E(r?, z) = AE(z) has a uniform perpendicular spacial profile, this term becomes

zero, and therefore Eq. 6.6 can be solved analytically. A schematic description for

this situation is shown in Fig. 6.1(a).

Figure 6.1: (a)When the input field is plane wave, Eq. 6.6 can be solved analyti-
cally, the amplitude of the wave will change but its perpendicular profile remains the
same. (b) When input becomes LG mode beams, we assume each component will
be amplified on their own, ignoring interaction between di↵erent components in the
beam.

However, for LG mode beams, the complicated perpendicular profile will hugely

increase the computation di�culty. Therefore we will make another simplification

here, ignoring the second term on the left hand side as if our input beam is composed

of many infinitesimal plane wave. During the FWM process, each of the infinitesimal

component will be amplified di↵erently since they have di↵erent amplitude to begin
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with. This situation is shown in Fig. 6.1(b). We should be aware that this simplifi-

cation completely ignores the interaction between di↵erent components of the beam

(this is the physical interpretation of the second term on the lefthand side.) However

this e↵ect is small in our setup since our cell is short and the beam components will

leave the cell before they can interact too much.

In the end, our Mathematica program numerically solves the following coupled

first-order di↵erential equations.

@

@z
EStokes =

ikStokes

2✏0
[3�1221E2

pumpE⇤
probe] (6.7)

@

@z
Eprobe =

ikStokes

2✏0
[3�1221E2

pumpE⇤
Stokes] (6.8)

In our toy system, the wave vector k is the same for probe and Stokes. We can

thus set the coe�cient ik/2✏0 = 1,assuming perfect phase matching To solve this set

of equations, we need the initial condition for Stokes and probe field. In our setup,

since there is no Stokes field before FWM, Stokes field is set to zero. Probe field, on

the other hand, takes the value of whichever LG mode we set it as.

6.3 Stokes and probe profile

In this section, we will briefly show the sample Stokes and probe profile when we set

the beam parameters to our experiment setup. rpump = 300µm, rprobe = 130µm. In

this example, we set the pump to LG(0,0) mode, and the probe to a superposition

of (3,2) and (-3,2) mode. The intensity and phase profile of input fields are shown in

Fig. 6.2. In the probe intensity profile we see the familiar petal pattern as we see in

the experiment, and the ring structure that should present with p 6= 0 modes. In the

probe phase profile we see that the phase varies in di↵erent position, agreeing with
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the theory picture in Eq. 2.12

Figure 6.2: Sample intensity and phase profile of pump and probe when we set the
parameters the same as our experiment. Note that the two figure are not on the same
scale.

We then input the fields into the coupled di↵erential equation and monitor the

output of the Stokes intensity and phase profile. Our program should obey the OAM

conservation rule stated in Eq. 2.22, sharing the same dominant mode with probe

with the opposite sign. In our case, since the probe is (3,2)+(-3,2) mode, therefore

Stokes should be (-3,2)+(3,2) mode, which is the same as input. Moreover, phase of

the Stokes beam should be conjugated to the phase of probe beam as a consequence
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of FWM. Our simulation result is shown in Fig. 6.3.

Figure 6.3: Sample intensity and phase profile of probe and Stokes when we set the
parameters the same as our experiment. The Stokes has the same dominant mode
and conserves OAM. However, its intensity on the outer ring is much lower comparing
to the probe.

Just by looking at the intensity profile of Stokes, we can already tell that it is

not 100% the same as the input probe, meaning that there must be other modes

presenting in the Stokes beam besides the dominant (3,2)+(-3,2) mode. However, it

looks like l mode is conserved, (the phase map of Stokes is the same as in Fig. 6.2),

it is p index that is a problem. In the following sections, we will investigate the
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relationship between the size of the input beams and the mode decomposition of

Stokes mode that we get.

6.4 FWM e�ciency under di↵erent probe size

The first calculation that we do is to look at the intensity of Stokes beam with respect

to di↵erent probe beam size. In our experimental setup, the total probe power is

fixed. However, probe beam size can be adjusted through combination of lens. The

focusing of beam can bring two e↵ects. On one hand, the intensity in the center

region of probe field will be higher, however on the other hand the wave vector ~k of

the incoming probe field will have a wider spread of direction and will result in phase

mismatch �~k as described in Eq. 2.9. In reality we want to find a balance between

these two e↵ects. However since in our program focusing e↵ect is not considered, we

will model the beam as collimating beams with various radii. This will not give us

the most precise result, but will still qualitatively tell us whether FWM e�ciency is

sensitive to beam radius. In experiment we can use a telescope to change the size of

a collimated beam. It is just more work.

In order to simulate the e↵ect of a lens, we need to renormalize our probe beam

so that beam of di↵erent radius still share the same power. We control the power to

be 162µW , which is the power that we get when we run the program in parameters

that agree with our experiment. I want to point out here that the absolute value of

power in our simulation is not meaningful, as we have set multiple physical constants

to 1. Our result cannot be directly comparable to the experimental result, but should

follow similar trend. The renormalized intensity profile of 3 di↵erent probe beam:

w0 = 130µm, w0 = 65µm, and w0 = 32.5µm in LG mode (2,0) is shown in Fig. 6.4.

We couple these three probe beams to a Gaussian pump beam of w0 = 300µm,

which is the same as our experiment. The resulting Stokes beam intensity profile is
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Figure 6.4: Intensity profile for input probe beam of three di↵erent sizes. All of their
power is renormalized to 162µW. Smaller beam has a higher amplitude near origin
but a narrower spread, while larger beam has a lower intensity but a wider spread
over radius.

shown in Fig. 6.5.

We notice that the shape of each intensity profile resembles the shape of their

corresponding input. However, the configuration on the left (largest probe) has a

much weaker coupling than the rest two configurations. When we decrease the radius

of beam from the original 130µm to half its value, the coupling e�ciency doubles.

However when we further decrease the beam radius by half, the Stokes power only

increased slightly, for about 25%. Therefore we can conclude that the original beam

radius setting is not optimal, and we should focus the beam more tightly. The e↵ect

of shrinking beam size will be smaller and in experiment we should be able to find a

turning point where the increase of power due to focusing become smaller comparing

to the decrease of power due to phase mismatch, and that is where we should stop.

6.5 p mode information preservation

In Chapter 5, we experimentally confirmed OAM conservation in degenerate FWM

process. We concluded that although we see more noise in beam with higher l mode,

the information contained in l mode is fairly well preserved. In this section we will
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Figure 6.5: Intensity profile for output Stokes beam of three di↵erent sizes. In general,
smaller probe size generates smaller but higher power Stokes beam. Notice that the
FWM e�ciency in the original setting (left) is much worse comparing to the other
two.

look at the radial mode, p mode, and check whether if p mode information is also

preserved in degenerate FWM.

Fig. 6.6 shows the Stokes beam along with its intensity profile when we set beam

size equal to experiment (wpump = 300µm,wprobe = 130µm), with pump in (0,0) and

probe in (3,3) mode. When we compare the Stokes beam profile in the middle with

the probe input on the left, we can tell that the radial structure, especially that of

outer rings are not very well preserved in this configuration as the intensity drops

dramatically.

To quantatively analyze the mode composition in the Stokes beam, we have to rely
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Figure 6.6: Intensity profile of Stokes beam when wpump = 300µm,wprobe = 130µm,
pump=(0,0), probe=(3,3) The outer ring intensity of Stokes is much weaker compar-
ing to the pure (3,3) mode probe beam. The dominant p=3 is only 31.6% in mode
decomposition.

on mode decomposition. The advantage of using simulation instead of experimental

image is that the generated Stokes is perfectly spherically symmetric. Therefore we

chose to fit only the intensity profile on ✓ = 0 axis. However in this case, we need to

limit the mode which our program fit onto. Since through the Mach-Zehnder inter-

ferometer introduced in Chapter 5, we can obtain reliably good l mode information

already, we decided to set the l mode to the dominant mode. (In this particular case,

l = 3) We then fit the Stokes intensity profile shown on the right side of Fig. 6.6 to

l = 3, p = 0 � 5 mode. The best fit suggests that the dominant p = 3 mode only

constitute 31.6% of the Stokes beam. If we examine the best fit closer, we can see

that in the fit also has some tiny discrepancy with the intensity profile, suggesting

that there are even higher p mode components. However in order to control the de-

gree of freedom and avoid the problem of overfitting, we ignored higher p modes and

constrained our analysis upto p = 5.

Next we repeated the same process for di↵erent probe input sharing l = 3 but

di↵erent p number from 0 to 3. The intensity profile and p mode decomposition

results are shown in Fig. 6.7. We can see that with the increase of p number, the
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Figure 6.7: Intensity profile and mode decomposition results for di↵erent probe input
beam with l = 3, p = 0 � 3. In each case, the dominant mode and its percentage
is shown under the beam profile. The dominant mode component decrease as the p
number increase, but generally all of them are noisy.

dominant p mode component decreases. In general p mode information is not very

well preserved. Even in p = 0, where the dominant mode component is the highest

under this beam configuration, there is still only 70% of dominant mode where the

rest 30% consists of higher p modes. This can be concerning if we try to transmit

information through p mode since most of the information will be lost on its way.

To increase the p mode information preservation, we try to change our beam size.

For this purpose we can change either the pump size or the probe size. For simplicity,

we chose to change the pump size this time. We first tried to shrink the pump size to

the limit that the pump size equals that of probe. wpump = wprobe = 130µm. Fig. 6.8

shows the intensity profile and mode decomposition results when we input (3,0) and

(3,2) mode probe and (0,0) mode pump.

From Fig. 6.8, we see that as the pump size shrinks down, the dominant mode

becomes even less dominant, even totally covered up by other ”noise” modes. This

makes sense as a smaller pump size will decrease the coupling between pump and

probe, especially in the outer region. This is also shown in the intensity profile of the

Stokes beam generated. Especially in the p = 2 case, as we can tell from Fig. 6.8, the
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Figure 6.8: Intensity profile and mode decomposition results for (3,0) and (3,2) probe
input when wpump = wprobe = 130µm. The fit fails to give a good fit result, and the
dominant mode is totally covered up by other modes. From the intensity profile, we
can se that the ring structure is not preserved at all, and thus information is greatly
damaged.

outer ring structure is completely lost. The best fit the program gave also fail to fit

the intensity profile properly, providing multiple ”ripples” at the end of the fit. This

is another evidence of even higher mode present in the Stokes output.

If shrinking pump size decrease the p mode information preservation, then we

should predict that increasing the size of pump will increase the dominant p mode

component in the Stokes beam. This is also simulated with our program, under the

same condition of probe in (3,2) mode, but di↵erent size of pump.

By looking at Fig. 6.9, we can qualitatively conclude that with the increase in

pump size, the coupling between pump and probe becomes better, and thus the

Stokes are more amplified in the outer region. In fact, if we compare the pure (3,2)

mode probe, which is circled in the yellow rectangle, with the wpump = 8wprobe case,

the two beam almost look identical, and we really need the assistance of p mode

decomposition to tell the noises in this case.
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Figure 6.9: Intensity profile of Stokes beam with di↵erent pump size but the same
probe in pure (3,2) mode. The probe image is in the upper left corner, circled in
the yellow rectangle. We simulated 8 data points, with wpump = 1/2/3/4/8wprobe.
As the pump size increase, the outer ring structure becomes more clear, and p mode
information is better preserved.

The mode decomposition result for wpump = 8wprobe is shown in Fig. 6.10(a). This

time the dominant mode increases to 89%, which is much larger than 39% as in the

simulation result for our current experimental setup. In Fig. 6.10(b), we have shown

the trend of dominant mode for (3,2) mode probe when we increase the pump size.

We can see that as we increase the pump size, the dominant mode component also

increases, confirming our prediction.

Lastly, we tested the same trend for not only p = 2 modes, but other p modes

as well. Fig. 6.11 shows the trend of dominant mode for di↵erent p modes when we

increase the pump size. We can conclude that it is a general trend that when the
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Figure 6.10: (a) Mode decomposition result for wpump = 8wprobe, the dominant mode
(p = 2) reaches 89%, the noise is very small comparing to the dominant mode. (b)
The dominant mode component plotted against di↵erent pump size. The larger the
pump, the higher the dominant mode component becomes.

pump is larger, (thus when the probe interact with higher power region of the pump),

the p mode information is better transmitted through FWM. When wpump = 8wprobe,

dominant mode in the system all reaches above 80% and can be considered a good

preservation. We think this number will keep increasing if we increase the beam size

even further.
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Figure 6.11: The dominant mode percentage with respect to various pump radii.
For each p number, as the pump size increase, the dominant mode component also
increases. This e↵ect is especially large for higher p numbers like in p = 2 or 3
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Chapter 7

Conclusions and Next Steps

7.1 Conclusion

In our experiment, we successfully established an experimental platform which real-

ized degenerate FWM with two co-propagating, orthogonally polarized beam. We

experimentally confirmed that our experimental scheme conserve OAM fairly well up

to l = 8, although higher l modes do contain more noise.

We also built a sample FWM model which can reproduce the most basic function

of our experimental apparatus, and qualitatively confirmed that under the same total

probe power, smaller probe size gives us better FWM e�ciency. Moreover, we also

found that p mode information is not well preserved in our current experiment con-

figuration. Increasing the pump beam size will improve the transmission of p mode

information.

7.2 Next Steps

Looking ahead, we think there are several directions that will be interesting and

helpful to explore in order to improve our result. Firstly, we would like to compare our

simulation to experimental data, especially that of probe focus. While the simulation

result suggests that smaller probe gives higher FWM e�ciency, in reality we have
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to keep track of the influence due to phase match. We are interested in finding a

good balance point between these two e↵ects both experimentally and theoretically.

Several experimental trials have actually been made to implement focusing lens into

the system, but due to physical restriction of our experimental setup, we did not find

a reliable way of measuring Stokes power with focusing lens. It would be very ideal

if we could find a way to measure the Stokes power with di↵erent focusing probe,

as well as finding a way to model this e↵ect into our theoretical model, which needs

more complication than it currently has.

Another direction that is interesting to investigate would be adding a separate

source other than the laser that we use for pump and probe as a repump. The

repump will couple with the original pump and probe. According to rules of phase

conjugation, it will be able to provide a backward Stokes beam that has the potential

to increase FWM gain even further.
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Appendix A

Public Abstract

Here I attach the public abstract that is required for this thesis to meet the require-

ment for COLL400 curriculum.

Introduction and Background

E�cient ways of communication becomes crucial in our everyday life due to the

increase in the demand of large-size information exchange. As we step towards the

next generation of quantum communication, it is important to explore the possibility

of new potential modes for communication that can compliment the current stan-

dard: amplitude modulation and frequency modulation. One of the candidates that

have potential for increasing the data line capacity of high-quality communication is

the transverse spacial mode of light, in other words, the cross-section shape of the

light beam when it is traveling in space. The aim of my project thus is to investi-

gate, and further control the quality of the shape of laser beam during propagation

through nonlinear and quantum optical processes, as well as studying reliable ways of

extracting information from this mode. More particularly, I focus on the generation

and decomposition of light beams carrying Orbital Angular Momentum (OAM) via

degenerate four-wave mixing (FWM) in Rubidium vapor.

Summary of Result

We used light in di↵erent combinations of Laguerre-Gaussian (LG) modes as input
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source and looked at how the output mode after FWM process varies from the input.

From our experiment, we found that FWM preserves most of the angular information

but does not preserve radial information.

Intellectual Merit

The intellectual merit of my project is to develop an experimental platform which

integrates all the basic steps of telecommunication, from generation to mode decom-

position of light with di↵erent transverse spacial mode. Moreover, my system is

di↵erent from previous experiments in two ways. Firstly, my experiment generates

not one, but two, quantum entangled beams carrying conjugated modes. The cor-

relation between the pair of twin beams will help to suppress the noise and increase

the quality of signal. Secondly, the twin beams co-propagate, and share the same

frequency. This is unique compare to previous setups, in which the two beams had

di↵erent frequencies, and can expand the span of application to a broader range of

situations, where a single frequency source is preferred.

Broader Impact

In a broad sense, the goal of my project is to help developing a su�cient way of

high-data-rate transmission that will be applied in the near future. The success in

multi-spacial-mode beam transmission can change the way communication standards

are set, and can boost both the speed and security of information communication

to a new level. The technology itself is vital to national security and globalization.

But more importantly, the understanding of nonlinear and quantum optical processes

will serve as the bridge between our classical world and quantum phenomena that

completely change the way we perceive the world.
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