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1 Dark state

There are several ways to explain EIT, but probably the most intuitive one involves introduction of

a so-called “dark state” - a quantum superposition of the atomic levels that is decoupled from the

interacting laser fields. A traditional EIT arrangement includes a three-level atomic (or atom-like)

system, in which two of the levels are coupled to the common third level via two near-resonant elec-

tromagnetic fields. Assuming that each optical field interacts with only its corresponding transition,

the interaction Hamiltonian for such system can be written as:

Ĥ =

 −~ω13 0 −℘13E1

0 −~ω23 −℘23E2

−℘13E1 −℘23E2 0

 , (1)

where ω13 and ω23 are the frequency of the corresponding atomic transitions (here we place zero

evenrgy level at the state |3〉), E1,2exp(−iν1,2t)+c.c. are the electromagnetic fields interacting with

each atomic transition ℘ij is the dipole moment of a corresponding atomic transition. To simplify

this discussion, we for now consider resonant conditions ν1 = ω13 and ν2 = ω23. In this case it is

easy to show that one of the eigenstates |D〉 of such interaction Hamiltonian has zero eigenvalue,

such that Ĥ|D〉 = 0. Thus, any atom in such state is effectively decoupled from either laser fields,

rendering such state “non-interacting”. Moreover, such a state contains only two of three states,

involved in the interaction:

|D〉 = N (Ω1|2〉 − Ω2|1〉) , (2)

where N =
√

Ω2
1 + Ω2

2 is the normalization factor. Note, that such dark state is universal, and

does not depend on either relative energies of the chosen atomic states or the strengths of the

optical fields, down to single-photon fields in a fully quantum EIT treatment.

In a typical EIT arrangement, the levels are chosen such that states |1〉 and |2〉 have longer

lifetime than the state |3〉. Especially in the Λ configuration, the first two states are chosen

among the ground states sublevels. In this case, the atoms in the dark state cannot be excited

into the electronic excited states, prohibiting the fluorescence and making the atom “dark” for

the external observer. At the same time, the absence of the spontaneous emission removes the

dominant optical loss mechanism, so the laser fields can now propagate through the resonant
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atomic medium without any absorption. By analogy, we can introduce the orthogonal “bright”

superposition |B〉 = N (Ω1|1〉+ Ω2|2〉), such that is coupled to the excited state |3〉, and the

interaction Hamiltonian may be written as

Ĥ = ~
√

Ω2
1 + Ω2

2 (|3〉〈B|+ |B〉〈3|) (3)

It is easy to see that the relative phase of the atomic superposition is critical to ensure the non-

interaction condition for the dark state. For example, if the phase of one of the fields is suddenly

flipped by π, thus changing the minus sign in the dark state to plus, the atoms temporarily become

absorbing, until the atomic coherence is adjusted to the new conditions. By using such arguments,

we can qualitatively explain the spectral width of the EIT resonance, although accurate derivation

require using density matrix formalism, described in the next subsection.

For now, we specifically assumed that frequencies of each optical field match exactly the fre-

quencies of the corresponding transitions. One can show that even for non-zero laser detunings, the

steady-state dark state of Eq.(1) exists for the zero two-photon detuning δ = 0, where we define

δ = ν1 − ν2 − (ω13 − ω23 as the mismatch between the two-photon transition, formed by the two

lasers, and the frequency difference between states |1〉 and |〉. If a small non-zero detuning δ is

introduced, the state of atoms initially prepared in |D〉 is going to evolve in time as:

|Dδ(t)〉 = N
(

Ω1|2〉 − eiδ·tΩ2|1〉
)
, (4)

causing the sign of the dark state phase to slowly change. Since in reality atoms cannot maintain

their coherence forever, the dark state can exist only for a finite lifetime τcoh. So if the two-photon

detuning is small, such that the accumulated phase δ · τcoh � 1 is negligible, the dark state stays

largely non-interacting and EIT is preserved. But as detuning increases, the effect of the phase

evolution becomes more pronounced. in fact, we can roughly estimate the spectral EIT width to be

inversely proportional to the dark state lifetime using δ ·τcoh ≈ π/2. Such estimate is quite accurate

in the limit of very weak optical fields. We can also use this model to qualitatively explain the

power broadening: the increase of the EIT linewidth with the power of the optical fields. Eq.(1)

assumes free evolution of the atomic state; however, the stronger are the optical fields, the larger

is the probability to the evolving state to be rephased by the repeated interaction, shortening the

free phase evolution and thus increasing the transparency tolerance to the non-zero detuning.

2 Note on terminology: CPT vs EIT vs Raman

One of the difficulties of the literature search about EIT-related research is difference in terminol-

ogy different scientists use: for example, the two-photon transmission resonances can be referred

to as electromagnetically-induced transparency (EIT), coherent population trapping (CPT), dark

resonances, and Raman resonances. Moreover, different people sometimes put slightly different dif-

ferentiation in each of this term, so here we outline what we perceive as most common definitions.

CPT is often referred to the experimental arrangement involving a Λ-system with two long-

lived energy levels (typically two hyperfine or Zeeman ground state sublevels) and two optical fields

of comparable strength. In this case atoms “trapped” in the quantum superposition with close

to maximum coherence, and can be thought as a generalization of the optical pumping process.
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Such configuration is most common for metrology applications, such as CPT-based atomic clocks,

magnetometers, etc.

EIT is a more general case in which the transmission for a resonant optical field is enhanced

by means of another optical field, particularly without reduction of the atomic population on

the corresponding transition. This effect can happen in any three-level system (Λ, V or ladder

configuration), and, in principle, for arbitrary values of the optical fields. However, most often EIT

experiments imply one strong (“pump” or “control”) and one “weak” (“probe” or “signal”) optical

fields. In this arrangement the EIT looks the most “counterintuitive”, especially in the ladder

system, where adding a strong pump field between nominally empty excited states changes probe

absorption dramatically without noticeably changing atomic populations. Indeed, according to the

dark state Eq.(1), for Ω1 � Ω2 the population of the state |1〉, coupled to the weaker optical field,

is |Ω2/
√

Ω2
1 + Ω2

2 ≈ 1. Such regime is also most relevant to quantum information applications,

in which EIT is used for realization of the strong coupling between quantum optical fields and

long-lived atomic states, in particular for the slow light and quantum memory.

EIT is of course a small subset of general two-photon Raman processes. However, in the context

of light-atom interaction, often Raman resonances are referred to the case of narrow absorption

resonances appearing in a Λ system when the two optical fields are detuned from the excited state,

while maintaining the two-photon resonance (we will consider the effect of the laser detuning of

EIT below). In the last decade Raman resonances became a viable alternative to EIT for quantum

memory applications.

3 Density matrix description of the EIT

While the concept of the dark state provides an intuitive insight into the nature of EIT, the accurate

description of this process requires proper account of the decoherence processes for both optical

transitions and, even more importantly, the atomic coherence associated with the dark state. Since

the wave function formalism is not adequate for describing quantum systems in the presence of

decoherence, we have to utilize the density matrix formalism. Since we will be mostly interested in

the steady-state or slowly varying atomic evolution, we can apply the rotating wave approximation

and removing all fast oscillating terms. In this case the Hamiltonian Ĥ, given by Eq.(1 can be

rewritten as:

ĤRWA

~
=

−∆1 0 −Ω1

0 −∆2 −Ω2

−Ω∗1 −Ω∗2 0

 . (5)

Here, Ω1,2 are the Rabi frequencies, associated with each slowly varying amplitudes Ẽ1,2 of the

electromagnetic field, Ωi = ℘i3Ẽ/2~, ∆i = νi − ωi,3 is the one-photon detuning of each laser from

its corresponding transition. In this case the evolution of the atomic state matrix ρ̂ under the

action of the , is described by the following Maxwell-Block equation:

i~
dρ

dt
=̂
[
ĤRWA, ρ̂

]
+

1

2

{
Γ̂, ρ̂

}
, (6)

where the matrix Γ̂ contains information about all the decoherence effects. We will discuss the

specific effects of various aspects of the environment further in the manuscript, at that point we
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Figure 1: (a) A three-level Λ system, considered in the calculations below. (b) Example of the

narrow transmission resonance within the probe field homogeneous absorption profile due to EIT for

two different values of the control field. In this example γ12 = 0.001γ13,∆2 = 0, and Ω1 = 0.001γ13.

will introduce these decoherence rates phenomenologically: γi is the population decay rate of the

ith state (in case of a state having more than one decay channel, rij is the branching ratio to the

state j), and γij is the decoherence rate of the corresponding off-diagonal matrix element ρij . Here

we will also assume a closed system (i.e., there is no population exchange to the outside of the three

atomic levels), although it has been shown that the corresponding calculations for the open system

result in very similar outcome. Finally, since the Λ system, shown in Fig. 2 is by far more common

EIT configuration, in the following we will assume that the states |1〉 and |2〉 are sublevels of the

ground electronic state and experience no spontaneous emission, coupled to the common excited

electron state |3〉. In this case, the time evolution equations for the density matrix elements are:

ρ̇11 = r31γ3 − iΩ1ρ13 + iΩ∗1ρ31

ρ̇22 = r32γ3 − iΩ2ρ23 + iΩ∗2ρ32

ρ̇21 = −(γ12 − iδ)ρ21 − iΩ1ρ23 + iΩ∗2ρ31

ρ̇31 = −(γ13 − i∆1)ρ31 + iΩ2ρ21 + iΩ1(ρ11 − ρ33)

ρ̇32 = −(γ23 − i∆2)ρ32 + iΩ1ρ12 + iΩ2(ρ22 − ρ33) (7)

These equations can provide the exact solutions for any values of parameters and hopefully we

will have some numerical tool to explore these solutions. In this section we will consider only the

steady-state solutions to analyze the characteristics of the EIT transmission resonances. In this

case, even though Eqs.(7) becomes a system of linear equations and can be solved analytically, the

resulting expressions are rather cumbersome. So here we analyze the most common case of the

strong pump - weak probe regime (Ω1 � Ω2), in which the system response to the probe field is

linear, and thus we can simplify the solution, keeping only the linear terms in Ω1.

In this approximation it is convenient to use the perturbative approach to the solution. If there is

no probe field Ω1 = 0, all atomic population is optically pumped into the |2〉 state (assuming that the

pump field is sufficiently strong to provide efficient optical pumping): ρ
(0)
11 = 1, and ρ

(0)
22 = ρ

(0)
33 = 0.

Also ρ
(0)
23 = 0, since this is the coherence between two empty states. Substituting these values into

the right hand side of Eqs.(7) and keeping only linear terms in Ω1, we can substantially simplify
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the solution, since only two equations remain:

0 = −Γ12ρ21 + iΩ∗2ρ31

0 = −Γ13ρ31 + iΩ2ρ21 + iΩ1, (8)

where we use Γ12 = γ12− iδ and Γ13 = γ13− i∆1. This leads to very simple and elegant expressions

for the ground state and optical coherences:

ρ21 = − Ω1Ω∗2
Γ12Γ13 + |Ω2|2

(9)

ρ31 = iΩ1
Γ12

Γ12Γ13 + |Ω2|2
, . (10)

Then the probe linear susceptibility χp is:

χp(∆1, δ) =
℘2

13

~ε0
ρ31

Ω1
= i

℘2
13

~ε0Γ13

Γ12Γ13

Γ12Γ13 + |Ω2|2
. (11)

It is easy to see that in the ideal case of no decoherence between the states |1〉 and |2〉 γ12 = 0 and

zero two-photon detuning δ = 0 (i.e., for Γ12 = 0, the susceptibility completely vanishes, resulting is

100% transparency for the probe field. This result is particularly counter-intuitive when the lasers

are tune close to atomic resonance, where we would expect strong resonant absorption for the

probe field due to large atomic population in the state |1〉. This potential elimination of resonant

absorption by applying a strong additional electromagnetic field on a different transition is the

origin of the name for electromagnetically-induced transparency.

Resonant EIT; power broadening Let us fist consider the case of the probe laser tuned exactly

to the atomic resonance ∆1 = 0, but allow a small two-photon detuning δ � γ13. In this case we

can derive the canonical expression for the EIT resonance susceptibility by subsituting Γ13 = γ13

and Γ12 = γ13 − iδ in Eq.(11):

χp(δ) = i
℘2

13

~ε0γ13

[
γ12γEIT + δ2

]
− iδ|Ω2|2/γ13

γ2
EIT + δ2

, (12)

where γEIT = γ12 + |Ω2|2/γ13. The probe absorption coefficient α = k/2Im(χp) in this case is:

αp(δ) = α0
γ12γEIT + δ2

γ2
EIT + δ2

, (13)

where α0 =
k℘2

13
2~ε0γ13 is the unsaturated absorption for the |1〉 − |3〉 optical transition (without the

control field). It is easy to see that at exact two-photon resonance δ = 0 the probe absorption

is suppressed by the factor αEIT
α0

= γ12
γEIT

= γ12
γ12+|Ω2|2/γ13 . Realistically, we can approach high

transparency in the limit of the strong pump field |Ω2| �
√
γ12γ13, resulting in the vanishing

absorption suppression factor αEIT
α0

= γ12γ13
|Ω2|2 → 0.

Eq.(13 also predicts the linewidth of the EIT transmission resonance γEIT = γ12 + |Ω2|2/γ13. It

is easy to see that for the very weak control field the resonance width is limited by the decoherence

rate γ12, which can in principle be very small, especially in the case of a Λ interaction system.
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Figure 2: Evolution of the two-photon resonance lineshape for different control field detunings ∆2.

In this example γ12 = 0.001γ13, Ω1 = 0.001γ13, and Ω2 = 0.3γ13.

As the control power increases, the EIT resonance broadens proportionally. For most practical

applications the balance between such power broadening (a narrow resonance needs lower control

power) and the absorption suppression factor (higher transmission needs higher control power)

determines the optimal control field parameters.

Two-photon resonances in case of non-zero laser detuning

Let us now consider another limiting case in which the probe field is detuned relatively far away

from the corresponding atomic transition, such that ∆1 � γ13. To analyze the probe absorption it

is convenient to rewrite Eq.(11) as:

χp(∆1, δ) = i
℘2

13

~ε0Γ13
− i ℘2

13

~ε0Γ13

|Ω2|2

Γ12Γ13 + |Ω2|2
. (14)

In such form we can easily identify the first term as a resonant probe interaction, while the second

term describes the control field effect. One can check that the largest relative contribution from

the second term happens near the two-photon resonance δ � ∆1. Then, taking into account

∆1 � γ13, γ12, we can simplify the expression for the off-resonant probe susceptibility as:

χp(∆1, δ) = iα0
γ13

γ13 − i∆1
+ iα0

|Ω2|2/∆2
1

γR − i(δ − δR)
. (15)

Here again the first term is the residual linear susceptibility, while the second term corresponds to

a two-photon Raman absorption resonance with the width γR = γ12 + γ13|Ω2|2/∆2 � γ13, shifted

from the exact two-photon resonance by δR = |Ω2|2/∆.
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