
Chapter 3

Mechanical Effects of Light

c⃝ 2019 by J.E.Thomas

Laser cooling arises in a simple way from the conservation of momentum
and energy. We will begin first with a heuristic treatment, due originally
to David Wineland. Then we will use the density matrix method and the
results of Chapter 2 to calculate the forces and viscous damping arising from
“Optical Molasses,” the term coined by Steven Chu. These ideas will be used
to understand the mechanics of a Magneto-Optical Trap, which is the work
horse for initially producing cold atoms in most atom-cooling and trapping
experiments.

3.1 Heuristic Treatment of Optical Cooling

We consider an atom, initially moving with velocity v, which makes a transi-
tion from the ground state |g⟩ to the excited state |e⟩ by absorbing a photon,
as shown in Fig. 3.1. We take h̄ω0 = Ee − Eg. Consider first the resonance
frequency for absorption of a photon, as shown in Fig. 3.2. The atom is ini-
tially in the ground state moving with a momentum p = mv. By absorbing
a photon, the atom makes a transition to the excited state, moving with a
new momentum p′. We assume that the atom makes the transition by ab-
sorbing a photon of frequency ωabs and energy h̄ωabs, with a wave vector q
and momentum h̄q. Then, momentum conservation requires

p′ = p+ h̄q.
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2 CHAPTER 3. MECHANICAL EFFECTS OF LIGHT

Figure 3.1: An atom absorbs laser photons of momentum h̄q and then spon-
taneously emits photons in a random direction, producing an average mo-
mentum transfer along q.

Figure 3.2: An atom, initially in the ground state g with velocity v absorbs
a photon of momentum h̄q in the direction of the laser beam. Note that
h̄ω0 ≡ Ee − Eg for an atom at rest.

Energy conservation requires

h̄ωabs +
p2

2m
+ Eg = Ee +

(p+ h̄q)2

2m
.

Then,

h̄(ωabs − ω0) =
(p+ h̄q)2 − p2

2m
=

p

m
· h̄q+

h̄2q2

2m
. (3.1)

We define the recoil energy

ER ≡ h̄2q2

2m
. (3.2)
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3.1. HEURISTIC TREATMENT OF OPTICAL COOLING 3

This is the kinetic energy that would be imparted to an atom, initially at
rest, when it absorbs a photon. For 6Li, the mass m = 10−23g, the resonant
wavelength is λ = 0.67µm. In this case, ER/kB = 3.5µK, i.e., the energy
corresponds to a the thermal energy kBT with T = 3.5 micro-Kelvin. Since
p = mv, the resonance frequency for absorption of a photon is

ωabs = ω0 + v · q+
ER

h̄
. (3.3)

We can rewrite this in terms of the Doppler shifted frequency in the atom
frame: ωabs − v · q = (h̄ω0 + ER)/h̄. This is just the total energy of the
atom, relative to that of the ground state for an atom at rest, including the
recoil kinetic energy. We see that recoil makes the resonant energy to absorb
a photon larger than the atom rest frame value h̄ω0.

Now consider the frequency for spontaneous emission of a photon1. As

Figure 3.3: An atom, initially in the excited state e with velocity v sponta-
neously emits a photon of momentum h̄qs in a random direction.

shown in Fig. 3.3, an atom initially in state |e⟩ and moving with velocity
v spontaneously radiates a photon of frequency ωem and wave vector qs.
In this case, momentum conservation requires that the initial momentum of
the atom equal the combined final momentum of the atom and the emitted
photon: p = p′ + h̄qs. Hence, p′ = p − h̄qs. Energy conservation then
requires

Ee +
p2

2m
= Eg + h̄ωem +

(p− h̄qs)
2

2m
.

Then,

ωem = ω0 +
p2 − (p− h̄qs)

2

2mh̄
= ω0 +

p

m
· qs −

h̄q2
s

2m
.

1Here, we neglect stimulated emission, assuming that the intensity is low, so that
ρ11 ≃ 1 and ρ22 << 1.

saeed
Highlight

saeed
Highlight

saeed
Highlight

saeed
Underline

saeed
Underline

saeed
Highlight

saeed
Highlight

saeed
Highlight



4 CHAPTER 3. MECHANICAL EFFECTS OF LIGHT

Hence,

ωem = ω0 + v · qs −
ER

h̄
. (3.4)

Now, spontaneous photons are emitted symmetrically in space on average, as
shown in Fig. 3.3, so that ⟨qs⟩ = 0. Hence, for many absorption and emission
cycles, the average spontaneous emission frequency is

ωem = ω0 −
ER

h̄
. (3.5)

Power input to the atoms.

The net change in the mechanical energy of the atoms ∆E for an average
absorption-emission cycle is just

∆E = h̄ωabs − h̄ωem = h̄q · v + 2ER. (3.6)

As shown in Chapter 2, the rate R of photon absorption can be written
in terms of the optical cross section σ, R = σI/(h̄ω), where I is the laser
intensity and we assume that ω ≃ ω0, since the spontaneous linewidth and
recoil frequency ER/h̄ are very small compared to ω0. The mechanical power
imparted to the atom is then

dE

dt
=

σI

h̄ω
(h̄q · v + 2ER) . (3.7)

Note, since spontaneous emission is spatially symmetric and produces no net
force on average, the average force on the atom is just

⟨F⟩ = σI

h̄ω
h̄q.

This is just the absorption rate multiplied by the momentum per per photon.
The first term in the power Eq. 3.7 is then just the scalar product of the
average force with the velocity, as it should be. The second term in Eq. 3.7
arises from the recoil energy and describes the heating due to random walk
in momentum space, as discussed further below.

Neglecting saturation, for small intensity, we have, from Chapter 2,

σ = σ(∆) = σ0
γ2
21

γ2
21 +∆2

, (3.8)
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3.1. HEURISTIC TREATMENT OF OPTICAL COOLING 5

where ∆ = ωatom frame − ω0 is the detuning as observed in the rest frame
of the atom. Here, γ21 = γs/2 and σ0 ≡ 3λ2/(2π) is the optical cross section
at resonance. Later, when we do a more detailed density matrix treatment,
we will include saturation.

Optical Molasses

When a single laser beam is shined on an atom, the force can be very
large (for an atom!). Near saturation, the optical rate R ≃ 1/(2τspont), as we
show below. For 6Li, τspont = 27 ns, and R ≃ 2× 107 per second. Then the
force has a magnitude F = R(h/λ), and the acceleration is a = Rh/(mλ).
For 6Li h/(mλ) = 0.1 m/s, so the corresponding acceleration is 2× 106m/s2

or 2× 105 times the acceleration of gravity!

Figure 3.4: Two oppositely propagating beams of equal intensity with wave
vectors ±q produce no net force on an atom at rest. A damping force that
opposes the velocity is produced when the laser frequency is tuned below
resonance.

To avoid this rapid acceleration and to cool the atoms, a pair of counter-
propagating laser beams are used, as shown in Fig. 3.4. The wave vectors
for the beams are taken to be ±q, where + denotes propagation along the
positive x-axis, i.e., q = qêx. For equal intensities and equal detunings from
resonance, ω−ω0, the forces from these beams exactly cancel for an atom at
rest, ⟨F ⟩total = ⟨F ⟩+q + ⟨F ⟩−q = 0.

Suppose instead that the atom is moving with a velocity v. For the
+ propagating beam, the detuning in the rest frame of the atom is ∆+ =
ω − v · q − ω0, i.e., if the atom moves in the + direction, the Doppler shift
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of the laser frequency is negative, while for the − propagating beam, the
corresponding detuning is positive ∆− = ω + v · q− ω0.

We cool the atoms by using a negative laser detuning, i.e., ω − ω0 < 0.
Then, there will be a force imbalance which tends to reduce the speed of a
moving atom: When the atom moves opposite to the propagation direction
of one beam, the Doppler shift increases the frequency in the rest frame of
the atom, moving it closer to resonance, and increasing the backward force.
The atom also is moving in the same direction as the second beam (which
counterpropagates with respect to the first), which produces a downward
Doppler shift, increasing the detuning in the rest frame of the atom, and
moving it further from resonance. The net effect is that the atom is slowed by
the force imbalance, which is always in a direction opposite to the component
of the velocity along the x-axis. Using three sets of beams, along the x,
y, and z directions, one obtains slowing in all three directions. This cools
the atoms. Steven Chu coined the term “optical molasses” to describe this
viscous damping effect.

To understand the cooling in more detail, we consider the net mechanical
power imparted by both beams, using σ(∆± ≡ ω−ω0∓v·q) for the respective
optical cross sections. Then, for two beams of equal intensity I propagating
along ±q,

dE

dt
=

I

h̄ω
[σ(∆+)(h̄v · q+ 2ER) + σ(∆−)(−h̄v · q+ 2ER)]

=
σ0I

h̄ω

{
(γs/2)

2(h̄v · q+ 2ER)

(ω − ω0 − v · q)2 + (γs/2)2

− (γs/2)
2(h̄v · q− 2ER)

(ω − ω0 + v · q)2 + (γs/2)2

}
(3.9)

We can easily show that Eq. 3.9 describes both viscous damping (when
ω−ω0 < 0) and heating, which arises from momentum diffusion. To see this,
we expand the Lorentzian factors to lowest order in q · v. We assume that
for sufficiently small velocity and nonzero detuning q ·v << ω−ω0 ≃ few γs,
i.e., the Doppler shifts are small compared to the linewidth for cold atoms.
Then,

1

(ω − ω0 ∓ q · v)2 + (γs/2)2
≃ 1

(ω − ω0)2 + (γs/2)2

+
±2(ω − ω0)q · v

[(ω − ω0)2 + (γs/2)2]2
. (3.10)
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3.1. HEURISTIC TREATMENT OF OPTICAL COOLING 7

Now, in Eq. 3.9, we see that the ER terms are of the same sign and add, so
that we retain only the first term in Eq. 3.10 to determine the lowest order
ER contribution. In contrast, the q · v terms in Eq. 3.9 are of opposite sign,
so that the first term in Eq. 3.10 does not contribute. The second term in
Eq. 3.10 produces two contributions in Eq. 3.9. These are ∝ (q ·v)2 and add.
Hence, we obtain

dE

dt
=

σ0I

h̄ω

(γs/2)
2

(ω − ω0)2 + (γs/2)2

{
2(ω − ω0) · 2h̄(q · v)2

(ω − ω0)2 + (γs/2)2
+ 4ER

}
. (3.11)

We see that the second term in Eq. 3.11 always heats. It arises from absorp-
tion followed by spontaneous emission in a random direction, which causes
momentum diffusion. The first term is negative, and cools the atoms if the
detuning ω − ω0 is negative. Note that the average cooling power for atoms
moving along x (recall q = qêx) is vx Fx−viscous. Hence, the first term in
Eq. 3.11 shows that the viscous force must be of the form −αvx, so that the
cooling power is of the form −αv2x, where α > 0 for ω − ω0 < 0.

The minimum temperature in the Doppler limit.

The balance between the cooling rate and the heating rate determines the
minimum temperature. As the friction force arises from the Doppler shift,
the minimum temperature in this case is called the Doppler limit, which
occurs for negligible saturation, as assumed in the above discussion. Let
δ ≡ (ω − ω0)/(γs/2) be the detuning in units of the linewidth, where γs/2
is the half width at half maximum (HWHM) of the Lorentzian factors. The
cooling is maximized relative to the heating when the first term in brackets
is as large as possible. Since

(ω − ω0)

(ω − ω0)2 + (γs/2)2
=

2

γs

δ

δ2 + 1
,

we just maximize the δ-dependent factor by differentiation, and obtain δ2 =
1. Since we want negative detuning, the ideal case is δ = −1 or

(ω − ω0)opt = −γs
2
. (3.12)

Using this in Eq. 3.11, we have(
dE

dt

)
opt

=
σ0I

h̄ω
· 2 ·

{
− h̄q2v2x

γs
+ ER

}
. (3.13)
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At equilibrium, when the average heating rate balances the cooling rate, the
mean square velocity must obey

h̄q2

γs
⟨v2x⟩ = ER =

h̄2q2

2m
, (3.14)

where we have used Eq. 3.2 for the recoil energy ER. Hence, we obtain
⟨v2x⟩ = h̄γs/(2m), or

m

2
⟨v2x⟩ =

h̄γs
4

≡ kBTDoppler

2
, (3.15)

where we use the equipartition theorem for the energy in the x-direction.
The Doppler limited temperature is then

kBTDoppler =
h̄γs
2

. (3.16)

For 3-dimensional cooling in the simplest configuration, we use 3 orthogonal
sets of counter-propagating beam pairs to cool in 3 dimensions, which yields
the same limiting temperature in each direction. For 6Li, we have γs =
2π × 5.9 MHz. Using h̄γs = hγs(Hz), we find TDoppler = 140µK.

3.2 Density Matrix Treatment of Optical Forces

We already have all of the machinery in place to calculate the average force
on an atom due to radiation pressure, including saturation. We will treat
optical molasses and the magneto-optical trap in more detail, to expand on
the heuristic treatment. We recall from Chapter 2 that the electric dipole
interaction for a plane wave traveling in the z-direction is

V = −µ⃗ · E = −µ⃗ ·

 E⃗
2
eikz−iωt + c.c

 . (3.17)

Here z is the location of the center of mass of the atom, and µ⃗ is the electric
dipole operator, which depends on the electron-nucleus relative coordinate.
The operator describing the z-component of the force on the atom is

FCM = −êz
∂

∂z
V = êz µ⃗ · ∂

∂z

 E⃗
2
eikz−iωt + c.c

 . (3.18)
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3.2. DENSITY MATRIX TREATMENT OF OPTICAL FORCES 9

Note that the dot product is between µ⃗ and E⃗ . Since ∂z e
±ikz = ±ik e±ikz,

we have for the force operator

F = ik êz µ⃗ ·

 E⃗0
2
e−iωt − E⃗∗

0

2
eiωt

 , (3.19)

where E⃗0 ≡ E⃗ eikz. The primary force is along êz due to k.
For a two-level atom, the quantum-averaged force is ⟨F⟩ = Tr{ρF} =

ρ12F21 + ρ21F12. We are interested in the time-averaged force (over a few
optical cycles), so that we can eliminate terms that oscillate at 2ω. Then,
we can write

⟨F⟩ = 2Re{⟨ρ21F12⟩T}, (3.20)

where ⟨...⟩T denotes a time T average, as in Chapter 1 and

F12 = ik êz µ⃗12 ·

 E⃗0
2
e−iωt − E⃗∗

0

2
eiωt

 , (3.21)

From Chapter 2,

ρ21 = λ−
21 e

−iωt; λ−
21 =

i

h̄

µ⃗21 · E⃗0
2

ρ11 − ρ22
γs/2− i∆

, (3.22)

where ∆ is the detuning in the rest frame of the atom. Then,

⟨F⟩ = 2Re


⟨
λ−
21 e

−iωt(−ikêz)
µ⃗12 · E⃗∗

0

2
eiωt

⟩
T

 , (3.23)

where we have dropped terms ∝ ⟨e−2iωt⟩T → 0. Then, the force takes the
simple form

⟨F⟩ = Re
{
−iλ−

21 µ⃗12 · E⃗∗
0

}
kêz. (3.24)

Using Eq. 3.22 and the Rabi frequency Ω ≡ µ⃗21 · E⃗0/h̄, we can write

⟨F⟩ = Re

{
Ω2

2

ρ11 − ρ22
γs/2− i∆

}
h̄kêz. (3.25)

Repeating the same steps as used to obtain the transition rateR = σ(∆)I/(h̄ω)
in Chapter 2, we can rewrite Eq. 3.25 in the physically intuitive form

⟨F⟩ = R(ρ11 − ρ22)h̄kêz. (3.26)
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Eq. 3.26 shows that the force is along +z when the ground state absorbs a
photon by stimulated absorption at a rate R, and is along -z when the excited
atom emits a photon by stimulated emission at a rate R. Each absorption
(emission) imparts to the atom a momentum h̄k (−h̄k). From Chapter 2, we
recall that ρ11 − ρ22 = γs/(γs + 2R). Then, we easily obtain

⟨F⟩ = γs
2
h̄kêz

2R/γs
1 + 2R/γs

. (3.27)

Using the saturation intensity, Isat = γsh̄ω/(2σopt), and the optical cross
section σ(∆) = σopt/(1 + δ2) from Chapter 2, we have

2R

γs
=

I

Isat

1

1 + δ2
, (3.28)

where δ = 2∆/γs is the detuning in units of the linewidth (HWHM), as
defined above. Then,

2R/γs
1 + 2R/γs

=
I/Isat

1 + δ2 + I/Isat
. (3.29)

Finally, we obtain the force on the atom arising from a single beam of inten-
sity I including saturation,

⟨F⟩ = γs
2
h̄kêz

I/Isat
1 + δ2 + I/Isat

. (3.30)

From Eq. 3.30, we see that for high intensity, I >> Isat, the maximum force is
⟨F⟩max = γs

2
h̄kêz. This result has a simple interpretation. At high intensity,

half of the atoms are in the excited state, so that γs/2 is the largest rate at
which the atom can absorb a photon, recoil forward, and then spontaneously
emit in a random direction. If the atom does not spontaneously emit, it
will emit a photon back into the beam and recoil backward by stimulated
emission, which cancels the recoil due to absorption. Hence, the spontaneous
emission rate from the excited state determines the net number of forward
recoils per second. As the photon momentum is h̄k, the net force has a
maximum of γsh̄k/2.

In is instructive to determine all of the parameters for a 6Li atom, where
the resonant wavelength is λ0 = 0.67µm and the mass is m = 1.0× 10−23g.
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3.2. DENSITY MATRIX TREATMENT OF OPTICAL FORCES 11

The spontaneous lifetime is τsp = 27 ns, so that the radiative decay rate γs =
1/τsp = 2π×5.9 MHz, i.e., for weak laser beams, the absorption linewidth in
the rest frame of the atom is 5.9 MHz, full-width at half maximum (FWHM).
Then, h̄ω = hc/λ0 = 3.0× 10−12 erg. The resonant absorption cross section
is σopt = 3λ2

0/(2π) = 2.1× 10−9 cm2. Then, Isat = (γs/2)h̄ω/σopt = 2.6× 104

ergs/s/cm2= 2.6 mW/cm2.

The maximum acceleration is obtained for ω = ω0 and I >> Isat: amax =
Fmax/m = γsh̄k/(2m) = γs h/(2mλ0) = 1.8× 108 cm/s2= 2 × 105 g’s! Note
that the large acceleration arises because the velocity change for absorption
of a single photon is ∆v = h/(mλ0) = 0.1 m/s, and the maximum absorption
rate γs/2 = 1/(2τsp) is ≃ 20 million photons per second!

Optical Molasses and Viscous Damping

As shown in Fig. 3.5, for an atom moving to the right with velocity v,
the Doppler shifts for two oppositely propagating beams are negative for the
right-going beam and positive for the left going beam.

Figure 3.5: Two oppositely propagating beams of equal intensity with wave
vectors ±kêz produce no net force on an atom at rest. A damping force that
opposes the velocity is produced when the laser frequency is tuned below
resonance. For an atom moving to the right with velocity v, the Doppler
shifted detunings for the right and left propagating beams are ∆± = ∆0∓kv,
respectively, where ∆0 = ω − ω0.

The net force on the moving atom, including saturation is obtained from
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Eq. 3.30 with ∆ → ∆±,

⟨F⟩ = ⟨F+⟩ + ⟨F−⟩

=
γs
2
h̄kêz

 I/Isat

1 + (∆0−kv)2

γ2
21

+ I/Isat
− I/Isat

1 + (∆0+kv)2

γ2
21

+ I/Isat

 .(3.31)

For I± = I and v = 0, ⟨F⟩ = 0 for any detuning ∆0 = ω − ω0. As in the
heuristic treatment, we can expend the force to lowest order in the Doppler
shift kv, assuming that for small v, the Doppler shift is small compared to
the power broadened linewidth. Then,

⟨F⟩ = v

(
∂⟨F⟩
∂v

)
v=0

=
∑
±

(
∂⟨F±⟩
∂∆±

)
v=0

∂∆±

∂v
v,

where the Doppler shift of the detunings ∆± = ∆0 ∓ kv makes the force
velocity dependent.

∂

∂v

1

1 + (∆0∓kv)2

γ2
21

+ I/Isat

∣∣∣∣∣∣∣
v=0

=
−1[

1 +
∆2

0

γ2
21
+ I/Isat

]2 2∆0

γ2
21

(∓k). (3.32)

Hence, the net force is

⟨F⟩ = −2∆0/γ
2
21[

1 +
∆2

0

γ2
21
+ I/Isat

]2 I

Isat
(−2kv)

γs
2
h̄kêz. (3.33)

This result can be written more compactly using δ = ∆0/γ21 and I ′ ≡ I/Isat.

⟨F⟩ = γs
2
h̄kêz

δI ′

(1 + δ2 + I ′)2
4k

γ21
v

Then, with γ21 = γs/2, we have

⟨F⟩ ≡ −α v êz, (3.34)

where α is the viscous damping coefficient, which is given by

α = −4h̄ k2 δI ′

(1 + δ2 + I ′)2
. (3.35)
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Note that α > 0 for δ < 0, i.e., the force in Eq. 3.34 is a damping (cooling)
force for δ < 0.

The maximum damping coefficient, and hence maximum cooling is ob-
tained for an optimum detuning δopt and an optimum intensity, i.e., Iopt/Isat =
I ′opt. To find the optimum values, we first assume that I ′ is given and find
the optimum detuning. This requires ∂α/∂δ = 0, or

I ′

(1 + δ2 + I ′)2
− 2δI ′ · 2δ

(1 + δ2 + I ′)3
= 0.

Then,

1− 4δ2

1 + δ2 + I ′
= 0,

so that 3δ2 = 1 + I ′. Hence,

δopt = −
√
1 + I ′

3
, (3.36)

where we use the negative value to obtain damping. From Eq. 3.35 and
Eq. 3.36, we then have for a given intensity,

αopt(I
′) = 4h̄k2

I ′
√

1+I′

3[
4
3
(1 + I ′)

]2 . (3.37)

Next, we find the optimum intensity using ∂αopt(I
′)/∂I ′ = 0. Hence, we

require
∂

∂I ′

{
I ′
√
1 + I ′

(1 + I ′)2

}
= 0,

where we are assuming that δopt is adjusted for each I ′. Then,

∂

∂I ′
I ′

(1 + I ′)3/2
=

1

(1 + I ′)3/2
− 3

2

I ′

(1 + I ′)5/2
= 0.

Then, 1+ I ′ = 3I ′/2, or I ′opt = 2, i.e., Iopt = 2Isat. Then, Eq. 3.36 shows that
δopt = −1, i.e., ∆0 = ω − ω0 = −γs/2. The optimum damping coefficient
from Eq. 3.37 is then

αopt = 4h̄k2
2
√

1+2
3[

4
3
(1 + 2)

]2 =
h̄k2

2
.
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Summarizing, for optimum damping, the detuning, laser intensity, and
viscous damping coefficient are given by

∆opt = −γs
2
; Iopt = 2 Isat

αopt =
h̄k2

2
.

(3.38)

The approximate size of the damping coefficient has a simple physical inter-
pretation. The maximum force is of order γs h̄k/2. As the forces from the op-
posing beams cancel for v = 0, the detuning arising from the Doppler shift for
v ̸= 0 determines the fraction of the maximum force that opposes the motion.
The fraction of the total force is the order of the Doppler detuning divided
by the linewidth, i.e., kv/γs, so that Fdamp ≃ (γs h̄k/2)(kv/γs) ≃ h̄k2/2. It
is interesting to note that the linewidth cancels out.

Magneto Optical Trap

The damping force cools the atoms and produces confinement in velocity
space. To build a magneto-optical trap or MOT, we need confinement in real
space. This is accomplished by using counter-propagating beams of opposite
circular polarization and a magnetic field gradient, generated with opposing
magnet coils, as shown in Fig. 3.6.

The magnetic field tunes the energy levels of the atom, Fig. 3.7. As shown
in Fig. 3.6, an atom at position z > 0 is in a magnetic field with Bz > 0.
For a state with a negative g-factor, the magnetic moment is antiparallel to
the angular momentum, the Zeeman energy shift is −µ⃗mag · B⃗ = µMagBz M .
When the detuning is negative as shown in Fig. 3.7, the local magnetic field
causes the M = +1 level to Zeeman tune upward for Bz > 0 , further from
resonance with the right propagating σ+ beam, while the M = −1 level tunes
downward, closer to resonance with the left propagating σ− beam. Hence,
the net force is along −z. For an atom with z < 0, the situation is reversed,
and the net force is along +z.

For the configuration shown in Fig. 3.6, since ∇ ·B = 0, cylindrical sym-
metry requires ∂Bx/∂x = ∂By/∂y = −(1/2)∂Bz/∂z. Hence, to obtain three
confinement in three directions, the handedness of the circular polarization
is reversed in the x and y directions, relative to that of the z-direction.
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Figure 3.6: Spatial confinement is produced by Zeeman tuning a three-level
atom with a spatially varying magnetic field. Two oppositely propagating
beams of equal intensity with wave vectors ±kêz and opposite circular po-
larization produce no net force on an atom at z = 0. A pair of opposing
magnet coils produces a magnetic field gradient that Zeeman tunes the en-
ergy levels of the atom such that for z ̸= 0 a restoring force is produced. For
the configuration shown here, ∂Bz/∂z > 0.

We see that for z = 0, ⟨F⟩ = ⟨F+⟩+⟨F−⟩ = 0. We now show that the net
force from the two opposing beams is proportional to −z, i.e., it is restoring,
when the Zeeman tuning is small. To see this, note that the detunings of the
two beams for an atom at position z (neglecting the Doppler shifts, which
are already included in the damping force) are

∆±
0 = ω − ω±

o = ω − ω0 ∓
µ

h̄

∂Bz

∂z
z, (3.39)

where ±µ is the magnetic moment of the atom for the M = ±1 states,
respectively. We expand the force about z = 0, analogous to the Doppler
shift case, where we expand about v = 0,

⟨F⟩ =
∑
±

∂⟨F±⟩
∂z

z =
∑
±

∂⟨F±⟩
∂∆±

0

∂∆±
0

∂z
z ≡ −Kz êz, (3.40)

where K is the effective spring constant. Now, this result is identical in form
to that leading to Eq. 3.33 for the damping force, where the net force arises
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Figure 3.7: Optical forces on a three-level atom. Absorption of a photon
from the right and left circularly polarized (σ±) beams produce transitions
from the J = 0,M = 0 ground state to the J = 1,M = ±1 states, respec-
tively, to conserve angular momentum. For an atom with z > 0, where the
magnetic field has Bz > 0, the M = 1 state is Zeeman tuned further from
resonance, while the M = −1 state is tuned closer to resonance, producing
a net restoring force along −z.

from the velocity dependent Doppler detuning ∓kv for the opposing beams.
Hence, to find the spring constant for the MOT, we simply replace kv by the
Zeeman detuning, so that −2kv → −2µ

h̄
∂Bz

∂z
z in Eq. 3.33. Then, with the

same notation as in Eq. 3.33,

⟨F⟩ =
−2∆0/γ

2
21[

1 +
∆2

0

γ2
21
+ I/Isat

]2 I

Isat
(−2

µ

h̄

∂Bz

∂z
z)

γs
2
h̄kêz

= h̄k êz
δI ′

(1 + δ2 + I ′)2
4
µ

h̄

∂Bz

∂z
z = −Kz êz. (3.41)

Hence, Eq. 3.41 shows that the spring constant for the MOT in the z-direction
is given by,

K = 4kµ
∂Bz

∂z

−δI ′

(1 + δ2 + I ′)2
. (3.42)

Note that the spring constant is positive for negative detuning and has the
same structure as Eq. 3.35. Hence, the maximum spring constant arises for
δopt = −1 and I ′ = 2, as for maximum damping. Then, with 1·2/(1+1+2)2 =
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1/8, we obtain

Kopt =
1

2
kµ

∂Bz

∂z
(3.43)

for I = 2Isat and ω − ω0 = −γs/2, where the magnetic field gradient is eval-
uated at z = 0. Note that the magnetic moment µ causes a frequency shift
of µ/h̄ = 2π × 1.4 MHz/G for one Bohr magneton.

Trap Depth

The effective force of the MOT beams for one direction (z) is

Fz = −K z, (3.44)

so that the effective trapping potential is harmonic U = Kz2/2. The max-
imum trap depth is determined by the largest z for which the atoms still
interact with the light, Fig. 3.8.

Figure 3.8: The maximum depth of a magneto-optical trap is determined by
the largest detuning such that the light still interacts with the atoms, i.e., the
largest z, where the Zeeman shift is approximately equal to the linewidth.

In this case, the maximum Zeeman shift must be less than or equal to
the linewidth. We take ∣∣∣∣∣µh̄ ∂Bz

∂z

∣∣∣∣∣ zMax = 2γ21 = γs. (3.45)

Then, the magnitude of zMax is

zMax(cm) =
γs(rad/s)∣∣∣µ

h̄
∂Bz

∂z

∣∣∣ =
γs(Hz)∣∣∣µ

h
∂Bz

∂z

∣∣∣ (Hz/cm)
(3.46)
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For a typical atom, µ is approximately a Bohr magneton, and µ/h = 1.4
MHz/G as noted above. Using ∂Bz/∂z = 30 G/cm, and γs(Hz) = 1/(2πτs) =
5.9 MHz for 6Li, we have zMax = 5.9/(1.4)(30) = 0.14 cm = 1.4 mm, which
is the nominal size of a typical MOT. Here, we have neglected the effective
repulsive force arising from absorption of photons from the MOT beams,
which becomes important when the number of atoms is large. This leads to
spontaneous photons, which are reabsorbed, producing an outward repulsive
force that we will treat in the homework problems. Neglecting this effect,
the corresponding maximum trap depth is

UMax =
1

2
Koptz

2
Max

=
1

2

1

2
kµ

∂Bz

∂z

 γs∣∣∣µ
h̄
∂Bz

∂z

∣∣∣
2

= γs
h̄k

4

(∣∣∣∣∣µh̄ ∂Bz

∂z

∣∣∣∣∣
)−1

γs

=
h̄γs
4

kzMax = kBTDoppler
kzMax

2
. (3.47)

Eq. 3.47 shows that the maximum MOT depth is inversely proportional to
the magnetic field gradient.

Now, kzMax/2 = πzMax/λ. For
6Li, where λ = 0.67µm, we have kzMax/2 =

3.14(0.14)/(0.67 × 10−4) = 6.6 × 103. Using TDoppler = 0.14 mK, as shown
above, we find UMax/kB = 0.9K >> TDoppler. Typical MOT depths are the
order of one Kelvin, large compared to the energy scales of cold atoms, which
typically are well below a milli-Kelvin.

Capture Velocity

Optical molasses cools the atoms into the MOT, but the cooling only
works if the velocity is low enough that the Doppler shift is at most kv = γs.
The capture velocity is then

kvc = γs =
1

τs

or
vc(cm/s) = λ(cm) γs(Hz). (3.48)

For 6Li, with the above parameters, the capture velocity vc = 400 cm/s or
4 m/s. This can be increased by using larger detunings ω − ω0 from reso-
nance and higher intensity I/Isat during the MOT loading phase. Following
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the loading, optimum cooling can be obtained by lowering the MOT beam
intensities and tuning closer to resonance.




