PHYS 690 Quantum and Nonlinear Optics

Problem set \# 3 (discussion date - November 3)
P1 The expression for the electric field operator is given by:
$\hat{E}=\sqrt{\frac{\hbar \omega}{\epsilon_{0} V}}\left(\hat{a} e^{-i \omega t}+\hat{a^{\dagger}} e^{i \omega t}\right) \sin k z$
The front factor $-\sqrt{\frac{\hbar \omega}{\epsilon_{0} V}}$ - is often referred to as an "electric field of a single photon", even though $\langle 1| \hat{E}|1\rangle=0$. Explain why this still a reasonable name for this value.

P2 Prove that coherent states are not orthogonal, i.e. that
$\langle\alpha \mid \beta\rangle=\exp \left\{-\frac{1}{2}\left(|\alpha|^{2}+|\beta|^{2}-2 \alpha^{*} \beta\right)\right\}$.
P3 A single photon source is a necessary component of many quantum cryptography devices. Due to the lack of commercially available true single photon sources, many experiments use a strongly attenuated laser pulses with average photon number per pulse much less than one. This is not optimal solution, since there is always a non-zero probability for having a pair of photons, which is a security risk. Assume that for a particular protocol sets a limit $p \ll 1$ to the ratio of two-photon pulses with respect to the singe-photon pulses. What is the average number of photons in this attenuated coherent state?

P4 A Schrodinger cat state is a superposition of two coherent states: $|\psi\rangle \simeq(|\alpha\rangle+|-\alpha\rangle) / \sqrt{2}$. Calculate average electric field of this state, and average photon number. What do these answers imply?

P5 A photon-added coherent state is the state $|\alpha, 1\rangle=\mathcal{N} \hat{a}^{\dagger}|\alpha\rangle$. Find the normalization factor \mathcal{N} of this state, and determine its photon statistics.

P6 Consider the superposition of the vacuum and 10 photon number state: $|\psi\rangle \simeq(|0\rangle+|10\rangle) / \sqrt{2}$. Calculate the average photon number. Next assume that a single photon is absorbed and recalculate the average photon number. Does your result seem sensible? Can you resolve a possible controversy?

P7 The experimenters reported 5 dB intensity squeezed vacuum. Help theorists to write the squeezing operator to produce that amount of squeezing. How one must change it to obtain 5 dB of phase squeezed vacuum?

P8 Calculate the variances of the quadrature operators $\Delta X_{1,2}$ in a coherent state $|\alpha\rangle$ and show that they are the same as for the vacuum state.

