

First, we are going to express the output model \hat{e}_{0} and \hat{e}_{1} in terms of input modes \hat{a}_{0} and \hat{a}_{1}

$$
\begin{aligned}
& \hat{b}_{0}=\frac{1}{\sqrt{2}}\left(\hat{a}_{0}+i \hat{a}_{1}\right) \\
& \hat{b}_{1}=\frac{1}{\sqrt{2}}\left(i \hat{a}_{0}+\hat{a}_{1}\right)
\end{aligned}
$$

and $\quad \hat{c}_{0}=\frac{1}{\sqrt{2}}\left(\hat{b}_{0}+i \hat{b}_{1} e^{i \varphi}\right)=\frac{1}{2}\left[\left(\hat{a}_{0}+i \hat{a}_{1}\right)+i e^{i \varphi}\left(i \hat{a}_{0}+\hat{a}_{1}\right)\right]$

$$
\begin{aligned}
& =\frac{1}{2}\left[\left(1-e^{i \varphi}\right) \hat{a}_{0}+i\left(1+e^{i \varphi}\right) \hat{a}_{1}\right] \\
\hat{c}_{1} & =\frac{1}{\sqrt{2}}\left(i \hat{b}_{0}+\hat{b}_{1} e^{i \varphi}\right)=\frac{1}{2}\left[i\left(1+e^{i \varphi}\right) \hat{a}_{0}-\left(1-e^{i \varphi}\right) \hat{a}_{1}\right]
\end{aligned}
$$

Measured signal $I_{p h} \alpha\left\langle\hat{n}_{c_{1}}\right\rangle-\left\langle\hat{n}_{c_{0}}\right\rangle=\left\langle\hat{c}_{1}^{+} \hat{e}_{1}\right\rangle-\left\langle\hat{c}_{0}^{+} \hat{c}_{0}\right\rangle$

$$
\begin{aligned}
& \hat{c}_{1}^{+} \hat{c}_{1}-\quad=\frac{1}{4}\left[\left(-i\left(1+e^{-i \varphi}\right) \hat{a}_{0}^{+}-\left(1-e^{-i \varphi}\right) \hat{a}_{1}^{+}\right)\left(i\left(1+e^{i \varphi}\right) \hat{a}_{0}-\left(1-e^{i \varphi}\right) \hat{a}_{1}\right)\right]= \\
& \quad=\frac{1}{2}(1+\cos \varphi) \hat{a}_{0}^{+} \hat{a}_{0}+\frac{1}{2}(1-\cos \varphi) \hat{a}_{1}^{+} \hat{a}_{1}+\frac{1}{2}\left(\hat{a}_{0}^{+} \hat{a}_{1}+\hat{a}_{1}^{+} \hat{a}_{0}\right) \sin \varphi
\end{aligned}
$$

similarly

$$
\hat{c}_{0}^{+} \hat{c}_{0}=\frac{1}{2}(1-\cos \varphi) \hat{a}_{0}^{+} \hat{a}_{0}+\frac{1}{2}(1+\cos \varphi) \hat{a}_{1}^{+} \hat{a}_{1}-\frac{1}{2}\left(\hat{a}_{0}^{+} \hat{a}_{1}+\hat{a}_{1}+\hat{a}_{0}\right) \sin \varphi
$$

thus $\quad \hat{a}_{1}^{+} \hat{c}_{1}-\hat{c}_{0}^{+} \hat{c}_{0}=\left(\hat{a}_{0}^{+} \hat{a}_{0}-\hat{a}_{1}^{+} \hat{a}_{i}\right) \cos \varphi-\left(\hat{a}_{0}^{+} \hat{a}_{1}+\hat{a}_{1}^{+} \hat{a}_{0}\right) \sin \varphi$
And now we can average the final photon difference using known initial states.

$$
\left.\left.\overline{n_{\text {ed }}=\left\langle\hat{c}_{1}^{+}+\hat{c}_{1}-\hat{c}_{0}^{+} \hat{c}_{0}\right\rangle=\left(\left\langle\hat{a}_{0}^{+} \hat{a}_{0}\right\rangle-\left\langle\hat{a}_{1}^{+} \hat{a}_{1}\right\rangle\right) \cos \varphi-\left(\left\langle\hat{a}_{0}^{+}\right\rangle\left\langle\hat{a}_{1}\right\rangle+\left\langle\hat{a}_{1}\right\rangle_{x}\right.}+x \hat{a}_{0}\right\rangle\right) \sin \varphi,
$$

where $\langle\ldots\rangle=\left\langle\left. i\right|_{\ldots, \ldots}, \mid i\right\rangle$

$$
|i\rangle=|\alpha\rangle_{\hat{a}}|\xi\rangle_{\hat{a}}
$$

coherent squeezed
state vacuum

$$
\begin{aligned}
& \bar{n}_{c d}=\left(\langle\alpha| \hat{a}_{0}^{+} \hat{a}_{0}|\alpha\rangle-\langle\xi| \hat{a}_{1}^{+} \hat{a}_{1}|\xi\rangle\right) \cos \varphi- \\
&-\left(\langle\alpha| \hat{a}_{0}^{+}|\alpha\rangle\langle\xi| \hat{a}_{1}|\xi\rangle+\langle\alpha| \hat{a}_{1}^{+}|\alpha\rangle\langle\xi| \hat{a}_{1}^{+}|\xi\rangle\right) \sin \varphi= \\
&=\left(|\alpha|^{2}-\sinh ^{2} r\right) \cos \varphi \quad\left|\frac{\partial \bar{n}_{c d}}{\partial \varphi}\right|=\left(|\alpha|^{2}-\sinh ^{2} r\right) \sin \varphi \\
& \text { max sensivity } \varphi=\pi
\end{aligned}
$$ \max sensitivity $\varphi=\pi / 2$

For $\varphi=\pi / 2$

$$
\bar{n}_{c d}=0
$$

$$
\begin{aligned}
& -\hat{n}_{c d}=\hat{a}_{0}^{+} \hat{a}_{1}+\hat{a}_{1}^{+} \hat{a}_{0} \quad\left(\hat{a}_{+}^{+}+\hat{a}_{1}+1\right) \\
& \hat{H}_{c d}^{2}=\left(\hat{a}_{0}^{+} \hat{a}_{1}+\hat{a}_{1}^{+} \hat{a}_{0}\right)^{2}=\left(\hat{a}_{0}^{+}\right)^{2}\left(\hat{a}_{1}\right)^{2}+\left(\hat{a}_{1}^{+}\right)^{2}\left(\hat{a}_{0}\right)^{2}+\hat{a}_{0}^{+}+\hat{a}_{0}+\hat{a}_{1} \hat{a}_{1}^{+}+ \\
& \left(\hat{a}_{0}^{+} \hat{o}_{0}^{++1)}\right. \\
& +\hat{a}_{0} \hat{a}_{0}^{+} \hat{a}_{1}^{+} \hat{a}_{1}^{+}
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\Delta n_{c d}\right\rangle^{2}=\left\langle\hat{n}_{c d}^{2}\right\rangle=\langle\alpha| \hat{a}_{0}^{+2}|\alpha\rangle\langle\xi| \hat{a}_{1}^{2}|\xi\rangle+\langle\alpha| \hat{a}_{0}^{2}|\alpha\rangle\langle\xi| \hat{a}_{i}^{+}|\xi\rangle+ \\
& \quad+2\langle\alpha| \hat{a}_{1}^{+} \hat{a}_{1}|\alpha\rangle\langle\xi| \hat{a}_{0}^{+} \hat{a}_{0}|\xi\rangle+\langle\alpha| \hat{a}_{0}^{+} \hat{a}_{0}|\alpha\rangle+\langle\xi| \hat{a}_{1}^{+} \hat{a}_{1}|\xi\rangle=
\end{aligned}
$$

$$
=\left(d^{*}\right)^{2}\left(-e^{i \theta}\right) \sinh r \cdot \cosh r+\alpha^{2}\left(-e^{-i \theta}\right) \sinh n \cdot \cosh r+2|\alpha|^{2} \sinh ^{2} r+|\alpha|^{2}+\sinh ^{2} r
$$

$$
=-|\alpha|^{2} \cos \left(\theta-\varphi_{\alpha}\right) \sinh r \cosh r+2|\alpha|^{2} \sinh ^{2} r+|\alpha|^{2}+\sinh ^{2} r
$$

Obviously, the value of fluctuations will depend on the relative phase b / w the squeesed vacuum and the coherent field / since the latter plays a role of a local oscillator)
Min value corresponds to $\theta=\varphi_{\alpha}+2 \pi$

$$
\begin{aligned}
& \left(\Delta n_{c d}\right)^{2}=|\alpha|^{2}\left(1+2 \sinh ^{2} r-2 \sinh r \cosh r\right)+\sinh ^{2} r= \\
& =|\alpha|^{2}\left(\sinh ^{2} r+\cos ^{2} r-2 \sinh r \cosh r\right)=|\alpha|^{2}(\cosh r-\sinh r)^{2}=|\alpha|^{2} e^{-2 r}
\end{aligned}
$$

Thus $\left(\Delta n_{c d}\right)_{s q z}=\left(s n_{c d}\right)_{c o h} \cdot e^{-r}$
and $\left.\Delta \varphi\right|_{\text {sqq }}=e^{-r} \Delta \varphi_{\mathrm{vac}}^{\text {col }}$

Problem 3

$$
\begin{aligned}
& \hat{a} \hat{b}|y\rangle=y|y\rangle \\
& \left(\hat{a}+\hat{a}-\hat{b}^{+}+\hat{b}\right)|y\rangle=\left(\hat{n}_{a}-\hat{n}_{b}\right)|y\rangle=0
\end{aligned}
$$

Pair state $\quad|y\rangle=\sum_{n, m} C_{n m}|n\rangle|m\rangle_{B}$

$$
\begin{aligned}
& \left(\hat{a}^{+} \hat{a}-\hat{b}+\hat{b}\right) \sum_{n, m} c_{n m}|n\rangle_{a}|m\rangle_{b}= \\
& =\sum_{n, m}(n-m) c_{n m}|n\rangle|m\rangle=0 \Rightarrow c_{n m}=0 \text { for any } n \neq m \\
& |y\rangle=\sum_{n} c_{n}|n\rangle_{a}|n\rangle \\
& \hat{a} \hat{b}|\eta\rangle=\sum_{n} c_{n} \hat{a}_{b}|n\rangle_{a} \hat{b}_{n}|n\rangle_{b}=\sum_{n} c_{n} \cdot n|n-1\rangle_{a}|n-1\rangle_{b} \\
& =\eta|\eta\rangle \quad \quad c_{n+1}(n+1)=y c_{n} \\
& \quad c_{n}=\frac{y^{n+1}}{n!} c_{0} \quad c_{0}=\sqrt{\sum_{n} \frac{1}{(n)^{2 n}}}
\end{aligned}
$$

Clearly, this state closely resembles the product of two coherent states in each channel with average photon number \sqrt{y}. However, the number of photons in two channels is completely correlated, ie. "if n photons is detected in chancel "a", the exact same " b " number will be detected in channel " b "

Problem 2
a) $|3\rangle=\frac{1}{\sqrt{6}} \hat{a}^{+3}|0\rangle \quad|2\rangle=\frac{1}{\sqrt{2}} \hat{a}^{2}|0\rangle \quad|1\rangle=\hat{a^{t}}|0\rangle$

$$
\begin{aligned}
& \hat{a}_{0}^{+}=\left(i \hat{a}_{2}^{+}+\hat{a}_{3}^{+}\right) \\
& \hat{a}_{1}^{+}=\left(\hat{a}_{2}^{+}+i \hat{a}_{3}^{+}\right)
\end{aligned}
$$

$|3\rangle_{1}|0\rangle_{0}=\frac{1}{\sqrt{6}}\left(\hat{a}_{1}^{+}\right)^{3}|0\rangle_{1}|0\rangle_{0} \Rightarrow \frac{1}{4 \sqrt{3}}\left(\hat{a}_{2}^{+}+i \hat{a}_{3}^{+}\right)^{3}|0\rangle_{2}|0\rangle_{3}$ $\left.\left.=\frac{1}{4 \sqrt{3}}\left(\left(\hat{a}_{2}^{+}\right)^{3}-i\left(\hat{a}_{3}^{+}\right)^{3}+3\left(\hat{A}_{2}^{+}\right)^{2} \hat{a}_{3}^{+}-3 \hat{a}_{2}^{+}\left(\hat{a}_{3}^{+}\right)^{2}\right) 10\right\rangle_{2} 10\right\rangle_{3}=$

$$
=\frac{1}{4 \sqrt{3}}\left[\sqrt{6}\left(|3\rangle_{2}|0\rangle_{3}-i|0\rangle_{2}|3\rangle_{3}\right)+3 \sqrt{2}\left(i|2\rangle_{2}|1\rangle_{3}-|1\rangle_{2}|2\rangle_{3}\right)\right]
$$

$$
=\frac{1}{2} \cdot\left[\frac{\left.\left.|3\rangle_{2} 10\right\rangle_{3}-i 10\right\rangle_{2}|3\rangle_{3}}{\sqrt{2}}\right]+\frac{\sqrt{6}}{4}\left[i|2\rangle_{2}|1\rangle_{3}-|1\rangle_{2}|2\rangle_{3}\right]
$$

Noon state $\varphi=-\pi / 2$
Probability of the NOON state generation $P_{\text {NOON }}=\frac{1}{4}$

$$
\begin{aligned}
& \hat{a}_{2} \quad|2\rangle_{1}|1\rangle_{0}=\frac{1}{\sqrt{2}}\left(\hat{a}_{1}^{+}\right)^{2} \hat{a}_{0}^{+}|0\rangle_{1}|0\rangle_{0} \Rightarrow \\
& =\frac{1}{4}\left(\hat{a}_{2}^{+}+i \hat{a}_{3}^{+}\right)^{2}\left(i \hat{a}_{2}^{+}+\hat{a}_{3}^{+}\right)|0\rangle_{2}|0\rangle_{3}= \\
& =\frac{1}{4}\left[i\left(\hat{a}_{2}^{+}\right)^{3}-\left(\hat{a}_{3}^{+}\right)^{3}-\hat{a}_{2}^{+2} \hat{a}_{3}^{+}+i \hat{a}_{2}^{+} \hat{a}_{3}^{+2}\right]|0\rangle_{2}|0\rangle_{3}=
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4}\left[\sqrt{6} i\left[|3\rangle_{2}|0\rangle_{3}+i|0\rangle_{2}|3\rangle_{3}\right]+\sqrt{2}\left(i|1\rangle_{2}|2\rangle_{3}-|2\rangle_{2}|1\rangle_{3}\right)\right] \\
& =\underbrace{\frac{\sqrt{3}}{2} i\left[\frac{|3\rangle_{2}|0\rangle_{3}+i|0\rangle_{2}|3\rangle_{3}}{\sqrt{2}}\right]}_{\text {NOON state }}-\frac{1}{2 \sqrt{2}}\left[|2\rangle_{2}|1\rangle_{3}-i|1\rangle_{2}|2\rangle_{3}\right] \\
& \varphi=i / 2
\end{aligned}
$$

$P_{\text {NooN }}=3 / 4$ much more efficient

photous in this pont

 $x \times x y x y x x \not x x y x y x y x x x x x y x^{4} x$ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

