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The practical implementation of free-space quantum information tasks requires entanglement to
be sustained over long distances and in the presence of turbulent and noisy environments. The trans-
verse position-momentum entanglement of photon pairs produced by parametric down-conversion
has found several uses in quantum information science, however, it is not suitable for applications in-
volving long-distance propagation as the entanglement decays very rapidly when photons propagate
away from their source. Entanglement is lost after a few centimetres of propagation, and the effect
becomes even more pronounced in turbulent environments. In contrast, in this article, we show that
entanglement in the angle-orbital angular momentum (OAM) bases exhibits a remarkably different
behaviour. As with the position-momentum case, initially, the angle-OAM entanglement decays
with propagation, but as the photons continue to travel further from the source, the photons regain
their strongly correlated behaviour, and the entanglement returns. We theoretically and experi-
mentally demonstrate this behaviour and show that entanglement returns even in the presence of
strong turbulence. The only effect of turbulence is to increase the propagation distance for revival,
but once revived, the two photons remain entangled up to an arbitrary propagation distance. This
work highlights the role that OAM-angle entanglement will play in applications where quantum
information is shared over long distances.

Quantum Entanglement [1–4] is the key resource be-
hind the advancement of many applications such as quan-
tum imaging [5], quantum communication [6], quan-
tum information processing [7], and quantum computing
[8]. Spontaneous parametric down-conversion (SPDC)
is one of most widely used methods for generating en-
tangled photons, in which a pump photon at a higher
frequency interacts with a nonlinear crystal and pro-
duces two separate photons at lower frequencies called
the signal and idler photons. The entanglement of
down-converted photons has been extensively studied in
the discrete finite-dimensional bases such as polariza-
tion [9], time-bin [10, 11], and orbital angular momen-
tum (OAM) [12, 13] as well as in the continuous-variable
bases such as position-momentum [14–16], angle-OAM
[17], radial position-radial momentum [18], time-energy
[19–21]. Although there are several ways of quantify-
ing two-photon entanglement in two-dimensional bases
[22], there is no quantifier for more than two-dimensional
bases and continuous-variable bases, in which cases one
can talk only in terms of entanglement certifiers [23]. For
continuous-variable bases, there are several entanglement
certifiers such as Einstein Podolsky Rosen (EPR) crite-
rion [1, 14–17, 24, 25], partial transpose [26, 27], and
Rényi entropy [28, 29]. Among these certifiers, the EPR-
criterion is the most widely used one, and is used even
beyond photonic quantum systems [30, 31].

The practical implementation of quantum information
tasks requires entanglement to be sustained over long dis-
tances and in turbulent environments. The feasibility
of utilizing entanglement in the finite-dimensional bases
for long-distance quantum-information applications has
been demonstrated in several experimental works [32–
36]. However, the suitability of entanglement in the

continuous-variable bases for long-distance applications
has not been established so far. Among the continuous-
variable bases, position-momentum bases have been ex-
tensively investigated for its applicability in several ap-
plications such as quantum imaging [37–41], quantum
holography [42, 43], quantum metrology [44], and quan-
tum secure communication [45, 46]. Although position-
momentum entanglement has found uses in many of these
applications, it has not been found suitable for applica-
tions involving long-distance propagation. This is be-
cause of the fact that as the photons propagate away from
the down-conversion crystal, the position-momentum en-
tanglement decays very rapidly [47, 48] and this effect be-
comes worse in the presence of turbulent environments.

In this article, we explore propagation of entanglement
in the angle-OAM bases and demonstrate that the entan-
glement of down-converted photons in the angle-OAM
bases exhibits a remarkably different behaviour than in
the position-momentum basis. Just as in the case of
position-momentum basis, initially, the angle-OAM en-
tanglement decays with propagation, but as the photons
continue to travel further from the source, the entangle-
ment gets revived. We refer to this behaviour as the
propagation-induced entanglement revival. We theoreti-
cally and experimentally demonstrate this behaviour and
show that the propagation-induced entanglement revival
takes place even in the presence of strong turbulence.
This feature of angle-OAM entanglement can therefore
have important implications for long-distance quantum
information applications. Figures 1(a) and 1(b) illus-
trate how entanglement in the position-momentum and
angle-OAM bases propagate away from the crystal. The
entanglement in the position-momentum bases decays as
the photons propagate away from the crystal, and once
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FIG. 1. (a) and (b) illustrate how entanglement in the position-momentum and angle-OAM bases change as the two photons
propagate away from the down-conversion crystal.

the entanglement is lost, it does not revive upon fur-
ther propagation. On the other hand, just as with the
position-momentum case, the entanglement in the angle-
OAM bases also decays initially as the photons start
to propagate away from the crystal; however, a further
propagation by some distance revives the entanglement.
Once revived, the entanglement remains intact upto an
arbitrary propagation distance.
We now present our quantitative analysis and observa-

tions of propagation-induced entanglement revival using
the two-photon field produced by SPDC. For a Gaussian
pump with beam waist at the crystal plane z = 0, the
two-photon wavefunction in the position basis at a prop-
agation distance z is given by [15, 47, 48] ψ(ρs,ρi; z) =

A exp
[

− |ρs+ρi|
2

4w(z)2

]

exp
[

− |ρs−ρi|
2

4σ(z)2

]

eiφ(ρs,ρi,z), where

ρs ≡ (xs, ys) and ρi ≡ (xi, yi) are the transverse
positions of the signal and idler photons, respec-
tively at z, and where w(z) = w0

√

1 + z2/(k2w4
0),

σ(z) = σ0
√

1 + z2/(k2σ4
0), and k = π/λp. Also, w0 is

the pump beam waist at z = 0, σ0 =
√

0.455Lλp/2π,
L is the length of the crystal, λp is the wavelength of
the pump field, and eiφ(ρs,ρi,z) is a phase factor. The
two-photon position probability distribution function
P (ρs,ρi; z) = |ψ(ρs,ρi; z)

∗ψ(ρs,ρi; z)| at z is therefore
given by

P (ρs,ρi; z) = |A|2 exp

[

−
|ρs + ρi|

2

2w(z)2

]

exp

[

−
|ρs − ρi|

2

2σ(z)2

]

(1)

For a fixed idler position, say in the y-direction, the
two-photon position probability distribution is referred

to as the conditional position probability distribution of
the signal photon at z and is denoted as P (ys|yi; z).
The standard deviations of P (ys|yi; z) is referred to as
the conditional position uncertainty ∆(ys|yi; z) of the
signal photon. Similarly, by writing the two-photon
wavefunction ψ(ρs,ρi; z) in the transverse momentum
basis, one can calculate conditional momentum uncer-
tainty ∆(pys|pyi; z) of the signal photon at z. Ac-
cording to the EPR criterion of entanglement, if the
product ∆(ys|yi; z)∆(pys|pyi; z) < 0.5~, then the two
photons are entangled in the position-momentum bases
[1, 14]. In addition to the position-momentum bases
the down-converted photons are rendered entangled in
the angle-OAM bases as well. Using Eq. (1) and
the transformations ρs = (rs cos θs, rs sin θs) and ρi =
(ri cos θi, ri sin θi), we can write the two-photon angle
probability distribution function P (θs, θi; z) as:

P (θs, θi; z) =

∫∫

rsriP (rs, θs, ri, θi; z)drsdri, (2)

where (rs, θs) and (ri, θi) are the polar coordinates of the
signal and idler photons. Using P (θs, θi; z), one can ob-
tain the conditional angle probability distribution func-
tion P (θs|θi; z) and thereby the conditional angle un-
certainty ∆(θs|θi; z) of the signal photon. Denoting the
conditional OAM uncertainty by ∆(ls|li; z), we write the
EPR criterion for entanglement in the angle-OAM bases
as: ∆(θs|θi; z)∆(ls|li; z) < 0.5~ [17].
Now, using Eqs. (1) and (2), and the relevant ex-

perimental parameters w0 = 507 µm, L = 5 mm and
λp = 355 nm, we numerically evaluate P (ys, yi; z) and
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FIG. 2. (a) and (b) show the two-photon position probability distribution function P (ys, yi; z) and the angle probability
distribution function P (θs, θi; z) respectively at various z values. (c) Numerically calculated conditional position uncertainty
∆(ys|yi; z) as a function of z. The two dotted lines show the z-scaling of the uncertainty in the near- and far-field regions. (d)
Numerically calculated conditional angle uncertainty ∆(θs|θi; z) as a function of z. The two dotted lines show the z-scaling of
the uncertainty in the near- and far-field regions.

P (θs, θi; z) at different propagation distances z and plot
them in Figs. 2(a) and 2(b) respectively. In plotting
P (ys, yi; z) and P (θs, θi; z), we scale them in order to
make their maximum values equal to one. Next, by fix-
ing yi = 0 mm in P (ys, yi; z) and θi = 0 in P (θs, θi; z),
we calculate P (ys|yi; z) and P (θs|θi; z) and thereby the
conditional position uncertainty ∆(ys|yi; z) and the con-
ditional angle uncertainty ∆(θs|θi; z), and plot them in
Figs. 2(c) and 2(d) respectively. From the plots in
Figs. 2(c) and 2(d), we find that as the down-converted
photons propagate away from the crystal, the conditional
position uncertainty increases monotonically. However,
the conditional angle uncertainty increases initially but
later begins to decrease monotonically. (See Supplemen-
tary Information Sec. I and II for more detailed analysis
and numerical simulations.)

Although it is very difficult to derive the general an-
alytical expressions for the conditional position and an-
gle uncertainties as a function of z, we derive expres-
sions for how the conditional uncertainties scale with z
in the near- and far-field regions. The two dotted lines in
Figs. 2(c) show how the conditional position uncertainty

∆(ys|yi; z) scales with z in the near and far fields. We
find that ∆(ys|yi; z) increases monotonically as a func-
tion of z in both the near- and far-field regions. While
the uncertainty increases as σ(z) in the near-field, it in-
creases as w(z) in the far-field. The two dotted lines in
Figs. 2(d) show how the conditional angle uncertainty
∆(θs|θi; z) scales with z in the near and far field. We
find that while ∆(θs|θi; z) increases as z in the near field
regions, it decreases as 1/z in the far-field regions. (For
detailed theoretical calculations of the scaling laws, see
Supplementary Information Sec. I-B and I-C.)

Figure 3 shows the schematic of the experimental
setup for measuring the two-photon probability distri-
bution functions P (ys, yi; z), P (pys, pyi; z), P (θs, θi; z),
and P (ls, li; z) through coincidence measurements of the
two photons. An ultraviolet (UV) continuous wave (CW)
Gaussian pump (Coherent Genesis STM UV laser) of
wavelength λp = 355 nm, beam waist w0 = 507 µm is
incident on a 5 mm × 5 mm × 5 mm β-barium borate
(BBO) crystal. The crystal is cut in a manner that it
produces signal and idler photons with collinear type-
I phase-matching condition. A long-pass filter (LPF) is
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FIG. 3. (a) Schematic of the experimental setup for measuring position and angle coincidences. Inset shows the EMCCD
images of the SPDC field and the corresponding two-photon position and angle probability distribution functions. (b) Schematic
of the experimental setup for measuring the two-photon momentum probability distribution function. Inset shows EMCCD
images of the SPDC field and the corresponding two-photon momentum probability distribution function. (c) Schematic of the
experimental setup for measuring OAM coincidence and the OAM correlation. LPF: long-pass filter, BS: beam splitter, SLM:
spatial light modulator, SMF: single-mode fiber, F: interference filter. The blower heater (BH) is used for generating turbulence,
and it is switched on in the path of the SPDC field when studying the effect of turbulence on entanglement propagation.

placed after the crystal to block the UV pump. We use an
Andor iXon Ultra-897 electron-multiplied charged cou-
pled device (EMCCD) camera that has a 512× 512 pixel
grid with each pixel being 16× 16 µm2 of size. A 10 nm
bandpass filter centered at 710 nm is used in order to
detect the down-converted photons. The blower heater
(BH) produces turbulence by blowing hot air, and it is
switched on during our experiments involving turbulence.

For the coincidence measurements of P (ys, yi; z),
P (pys, pyi; z), and P (θs, θi; z), we use an EMCCD camera
[49, 50], as depicted in Figs. 3(a) and 3(b). For measuring

P (ys, yi; z) and P (θs, θi; z) and thereby the correspond-
ing uncertainties ∆(ys|yi; z) and ∆(θs|θi; z), we image
the transverse plane at z onto the EMCCD camera plane
using a 4f -imaging system, as depicted in Fig. 3(a). For
measuring P (pys, pyi; z) at z, we use a 2f imaging system
and keep the EMCCD camera plane at the Fourier plane
of the transverse plane at z, as depicted in Fig. 3(b). We
then measure the two-photon position probability distri-
bution function at the EMCCD camera plane, which is
proportional to the two-photon momentum probability
distribution function P (pys, pyi; z) at z. The conditional
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FIG. 4. (a) Conditional position-momentum uncertainty product ∆(ys|yi; z)∆(psy|piy; z) as a function of the propagation
distance z. The solid dots are the experimental results and the solid line is the best theoretical fit. (b) conditional angle-OAM
uncertainty product ∆(θs|θi; z)∆(ls|li; z) as a function of the propagation distance z. The solid dots are the experimental
results and the solid line is the best theoretical fit. As indicated on the plot, the theoretical prediction for entanglement revival
is at z = 22 cm while we observe it at about z = 28 cm.

momentum uncertainty ∆(pys|pyi; z) is obtained by mul-
tiplying the conditional position uncertainty at the EM-
CCD plane by k~/f , where f is the focal length of the
lens. (For details regarding measurement techniques and
results, see Supplementary Information Secs. III, IV, and
V). For the coincidence measurements of the two-photon
OAM probability distribution P (ls, li; z), we make use of
two electronically gated single photon avalanche diode
(SPAD) detectors [17, 51], as depicted in Fig. 3(c). We
image the transverse plane at z onto the SLMs kept in the
signal and idler arms. Specific holograms are displayed
onto both the SLMs and then the signal and idler SLM
planes are imaged onto the input facets of single-mode
fibers (SMFs) kept in the signal and idler arms. The com-
bination of the hologram and SMF in each arm projects
the input field into a particular OAM mode which then
gets detected by the SPAD detector through the SMF.
An electronic coincidence circuit then yields the coinci-
dence counts. By displaying different holograms on the
SLMs, we measure the two-photon OAM probability dis-
tribution.

Next, we report our measurements of the condi-
tion uncertainty products ∆(ys|yi; z)∆(pys|pyi; z) and
∆(θs|θi; z)∆(ls|li; z) at various z values in the absence of
turbulence. We note that the conditional momentum and
OAM uncertainties ∆(pys|pyi; z) and ∆(ls|li; z) remain
constant as a function of z due to the conservations of
momentum and OAM, respectively, in SPDC. As a result,
the functional dependence of ∆(ys|yi; z)∆(pys|yyi; z) and
∆(θs|θi; z)∆(ls|li; z) on z is same as that of ∆(ys|yi; z)
and ∆(θs|θi; z), respectively. In our experiments, we
measure ∆(pys|pyi; z) to be 2.13~mm−1, which is in good
agreement with the value 1.97~ mm−1 calculated using
Eq. (1). We note that with our theoretical modelling
based on the Gaussian pump beam, ∆(ls|li; z) should

be zero. However, because of the imperfection in the
spatial profile of the beam and other background issues,
∆(ls|li; z) is always finite in realistic experimental situa-
tions. We measure ∆(ls|li; z) to be 0.72~ radian−1 and
use this in our experiments (See Sec. II of the Supplemen-
tary Information for more details). Finally, we measure
∆(ys|yi; z) and ∆(θs|θi; z) at various z values and plot the
conditional uncertainty products ∆(ys|yi; z)∆(pys|pyi; z)
and ∆(θs|θi; z)∆(ls|li; z) as a function of z in Figs. 4(a)
and 4(b), respectively. Figures 4(a) and 4(b) also
show the theory plots calculated using Eqs. (1) and (2).
We see good agreement bewteen the theory and exper-
iments. We note that it is relatively easier to measure
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FIG. 5. Conditional angle-OAM uncertainty product
∆(θs|θi; z)∆(ls|li; z) as a function of the propagation distance
z in the presence of a turbulent medium. As indicated on the
plot, in the presence of turbulence, the theoretical prediction
for entanglement revival is at z = 35 cm while we observe it
experimentally at about 45 cm.
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∆(ys|yi; z)∆(pys|yyi; z) and ∆(θs|θi; z)∆(ls|li; z) close to
the crystal (z < 3 mm) or in the far field (z > 10
mm). However, due to the signal-to-noise limitations of
the EMCCD camera, it is not possible to make mea-
surements in the intermediate regions. (For details on
these measurements, see Sec. IV and V of the Supple-
mentary Information.) We find that entanglements in
both position-momentum and angle-OAM bases are lost
within a few centimeters from the down-conversion crys-
tal. However, while the position-momentum entangle-
ment never revives, the angle-OAM entanglement, as cal-
culated theoretically, revives after the photons have prop-
agated 22 cm away from the crystal; experimentally, we
find this distance to be about 28 cm. After the revival,
the angle-OAM entanglement does not decay back.

We next investigate if the propagation-induced entan-
glement revival takes place in turbulence environments,
which is quite often the limiting factor in the practical im-
plementations of many entanglement-based applications.
For this, we repeat our experiments depicted in Figs. 3(a)
and 3(b) in the angle-OAM basis with the blower heater
(BH) switched on and kept at z = 15 cm to introduce tur-
bulence in the path of the down-converted photons. We
experimentally measure the product ∆(θs|θi; z)∆(ls|li; z)
at different propagation distances ranging from z = 15
cm to z = 60 cm and plot them in Fig. 5. The solid line
represents the theoretically calculated value of the uncer-
tainty product. (For the detailed theoretical modelling
of turbulence and the calculations of ∆(θs|θi; z)∆(ls|li; z)
in the presence of turbulence, see Sec. VI and VII of the
Supplementary Information.) Our theory results show
that in the presence of turbulence, the angle-OAM entan-
glement revives at z = 35 cm; experimentally, we find this
distance to be about 45 cm. Therefore, we find that al-
though turbulence does affect angle-OAM entanglement
in an adverse manner, its effect can be completely by-
passed by just propagating the photons further ahead by
some distance.

In conclusion, using the two-photon field produced by
SPDC, we have reported experimental observations of
propagation-induced entanglement revival in the angle-
OAM bases. We have demonstrated entanglement re-
vival even in the presence of turbulence, the only effect
of which is to increase the propagation distance for re-
vival. Once revived, the two photons remain entangled
upto an arbitrary propagation distance. We note that the
entanglement revival strategies in turbulence or random
media are usually based on adaptive optics techniques
[34, 52, 53], which are usually based on the feedback
mechanism and as a result quite difficult to implement.
On the other hand, in our work, we have shown that
the entanglement can be revived simply by further prop-
agating the two-photon field by some distance, without
having to use any adaptive optics techniques. Thus, un-
like the position-momentum bases, the angle-OAM bases
brings in an independent parameter—the propagation

distance—for entanglement revival in turbulent environ-
ments and can therefore have important implications for
long-distance quantum information applications.
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lanpää, Stabilized entanglement of massive mechanical
oscillators, Nature 556, 478 (2018).

[31] M. Fadel, T. Zibold, B. Décamps, and P. Treutlein, Spa-
tial entanglement patterns and einstein-podolsky-rosen
steering in bose-einstein condensates, Science 360, 409
(2018).

[32] M. Aspelmeyer, H. R. Böhm, T. Gyatso, T. Jen-
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I. Calculation of conditional position and angle

uncertainties

A. Derivation of the formulas

For a Gaussian pump with beam waist at the crystal
plane z = 0, the two-photon wavefunction in the position
basis at the crystal plane z = 0 is given by [1–3]:

ψ(ρs,ρi; 0) = A exp

[

−|ρs + ρi|2
4w2

0

]

exp

[

−|ρs − ρi|2
4σ2

0

]

,

(1)

where ρs ≡ (xs, ys) and ρi ≡ (xi, yi) are the trans-
verse positions of the signal and idler photons, respec-
tively at z, k = π/λp, and |ρs| = ρs, etc. Also, w0 is

the pump beam waist at z = 0, σ0 =
√

0.455Lλp/2π,
L is the length of the crystal, and λp is the wave-
length of the pump field. Using the two-photon wave-
function ψ(ρs,ρi; 0) at z = 0, we calculate the two-
photon wave-function at ψ(ρs,ρi; z) at z and thereby
the two-photon position probability distribution function
P (ρs,ρi; z) = |ψ(ρs,ρi; z)

∗ψ(ρs,ρi; z)| at z, which can
be shown to be

P (ρs,ρi; z) = |A|2 exp
[

−|ρs + ρi|2
2w(z)2

]

exp

[

−|ρs − ρi|2
2σ(z)2

]

,

(2)

where w(z) = w0

√

1 + z2/(k2w4
0) and σ(z) =

σ0
√

1 + z2/(k2σ4
0).

In addition to the position-momentum bases the down-
converted photons are rendered entangled in the angle-
OAM bases as well. We obtain the two-photon angle
probability distribution by first writing P (ρs,ρi; z) of
Eq. (2) in the polar coordinates using the transformations
ρs = (rs cos θs, rs sin θs) and ρi = (ri cos θi, ri sin θi),
where (rs, θs) and (ri, θi) are the polar coordinates of
the signal and idler photons at z, etc. We therefore get:

|ρs + ρi|2 = r2s + r2i + 2rsri cos(θs − θi)

|ρs − ρi|2 = r2s + r2i − 2rsri cos(θs − θi)

P (rs, θs, ri, θi; z) = |A|2 exp
[

−r
2
s + r2i + 2rsri cos(θs − θi)

2w(z)2

]

× exp

[

−r
2
s + r2i − 2rsri cos(θs − θi)

2σ(z)2

]

(3)

∗ akjha9@gmail.com

We then integrate P (rs, θs, ri, θi; z) over the radial coor-
dinates in order to obtain the two-photon angle proba-
bility distribution function P (θs, θi; z) as:

P (θs, θi; z) =

∫∫

rsriP (rs, θs, ri, θi; z)drsdri, (4)

Now, using the relevant experimental parameters w0 =
507 µm, L = 5 mm, and λp = 355 nm in Eqs. (2),
and (4), we calculate the two-photon position proba-
bility distribution P (ys, yi; z) and the two-photon angle
probability distribution P (θs, θi; z) at different propaga-
tion distances z as shown in Figs. 1(a) and 1(c) re-
spectively. In plottting P (ys, yi; z) and P (θs, θi; z) in
Figs. 1(a) and 1(c), we scale them in order to make
their maximum values equal to one. We next calculate
the corresponding conditional position probability dis-
tribution function P (ys|yi; z) and the angle probability
distribution function P (θs|θi; z) by fixing yi = 0 mm in
P (ys, yi; z) and θi = 0 in P (θs, θi; z). Figures 1(b) and
1(d) show P (ys|yi; z) and P (θs|θi; z) respectively. Fig-
ures 1(a) and 1(b) show that in the near-field region the
two down-converted photons have the maximum proba-
bility of arriving at the same transverse position. This is
referred to as the position-correlation in the near-field
region [4]. As the photon pair propagate away from
the crystal plane, they become anti-correlated in posi-
tion. Figures. 1(c) and 1(d) show how the correlations
in the angle basis change as a function of z. We find
that in the near field, the signal and idler photons have
the maximum probability of arriving at the same angu-
lar positions. However, in the far field, the two photons
are most likely to arrive at antipodal locations, that is,
at angles separated by π radians. The standard devia-
tions of P (ys|yi; z), and P (θs|θi; z) are referred to as the
conditional position uncertainty ∆(ys|yi; z) and the con-
ditional angle uncertainty ∆(θs|θi; z), respectively. From
the plots in Fig. 1, we find that as the down-converted
photons propagate away from the crystal, the conditional
position uncertainty increases monotonically. However,
the conditional angle uncertainty increases initially but
later begins to decrease monotonically. We use the condi-
tional uncertainties ∆(ys|yi; z) and ∆(θs|θi; z) calculated
in this section to compare with the experimentally mea-
sured values reported in Sec. IV.
As calculated using Eqs. (2) and (4), the conditional

position and angle uncertainties behave differently upon
propagation. Although it is very difficult to derive the
general analytical expressions for the conditional posi-
tion and angle uncertainties, we have obtained analytical
expressions for how the conditional position and angle

http://arxiv.org/abs/2111.04420v1
mailto:akjha9@gmail.com
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FIG. 1. (a) and (c) show the two-photon position probability distribution function P (ys, yi; z) and the angle probability distri-
bution function P (θs, θi; z) respectively at various z values. (b) and (d) show the conditional position probability distribution
function P (ys|yi; z) and the conditional angle probability distribution function P (θs|θi; z) of the signal photon at various z

values.

uncertainties scale with z in the near- and far-field re-
gions.

B. Near- and far-field behaviours of the conditional

position uncertainty

The two-photon position probability distribution func-
tion is given by Eq. (2). By setting ρi = 0, we write
the conditional positional probability distribution func-
tion P (ρs|ρi; z) as

P (ρs|ρi; z) = |A|2 exp
[

−ρ
2
s

2

(

1

2w(z)2
+

1

2σ(z)2

)]

,

where w(z)2 = w2
0

[

1 +
z2

k2w4
0

]

,

σ(z)2 = σ2
0

[

1 +
z2

k2σ4
0

]

, (5)

and |ρs|2 = ρ2s. From Eq. (5), we obtain the conditional
position uncertainty in the y-direction as

∆(ys|yi; z) =
√

1
1

2w(z)2 + 1
2σ(z)2

. (6)

For the experimental parameters of interest, we have
w0 = 507 µm and σ0 = 11.3 µm. Therefore, in the

near-field region, we have w(z) ≫ σ(z) and thus the con-
ditional uncertainty in the y-direction becomes

∆(ys|yi; z) ≈ σ(z) = σ0

√

1 +
z2

k2σ4
0

. (7)

In the far-field, we have w(z) ≪ σ(z) and thus the con-
ditional uncertainty in the y-direction becomes

∆(ys|yi; z) ≈ w(z) = w0

√

1 +
z2

k2w4
0

. (8)

From Eqs. (7) and (8), we find that the conditional po-
sition uncertainty ∆(ys|yi; z) increases monotonically as
a function of z in both the near- and far-field regions.
While the uncertainty increases as σ(z) in the near-field,
it increases as w(z) in the far-field. Figure 2(a) shows
the plot of the numerically calculated conditional posi-
tion uncertainty ∆(ys|yi; z) as a function of z. The two
dotted lines in Fig. 2(a) show the z-scaling of the uncer-
tainty in the near- and far-field regions.
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FIG. 2. (a) Numerically calculated conditional position uncertainty ∆(ys|yi; z) as a function of z. The two dotted lines show
the z-scaling of the uncertainty in the near- and far-field regions. (b) Numerically calculated conditional angle uncertainty
∆(θs|θi; z) as a function of z. The two dotted lines show the z-scaling of the uncertainty in the near- and far-field regions.

C. Near- and far-field behaviours of the conditional

angle uncertainty

The two-photon angle probability distribution func-
tion is given by Eq. (4). The conditional angle prob-
ability distribution function P (θs|θi; z) is obtained by
setting θi = 0 in Eq. (4). As we are interested only
in obtaining the near- and far-field scaling of the con-
ditional angle uncertainty, we take P (rs, θs, ri, θi; z) =
P (rs, θs, θi; z)δ(rs − ri). Thus we write Eq. (4) as

P (θs, θi; z) =

∫

P (r, θs, θi; z)r
2dr. (9)

Using Eq. (3) and the Mathematica software, we evaluate
the above integral and obtain

P (θs, θi; z) =
P0

[C +D cos(θs − θi)]3/2
, (10)

where

P0 =
|A|2

√

π/2

8
,

C =
1

2

[

1

w(z)2
+

1

σ(z)2

]

,

D =
1

2

[

1

w(z)2
− 1

σ(z)2

]

. (11)

The ratio of C and D can be written as

C

D
=

w(z)2 + σ(z)2

−w(z)2 + σ(z)2

=
(w2

0 + σ2
0) +

z2

k2

[

1
w2

0
+ 1

σ2
0

]

(−w2
0 + σ2

0) +
z2

k2

[

− 1
w2

0
+ 1

σ2
0

] . (12)

In our experiments, we have w0 = 507 µm and σ0 = 11
µm. Thus we have w0 ≫ σ0, and under this approxima-
tion we write the above ratio as

C

D
=

w2
0 + z2/(k2σ2

0)

−w2
0 + z2/(k2σ2

0)
=
z2 + k2σ2

0w
2
0

z2 − k2σ2
0w

2
0

. (13)

Next, we study the behaviour of P (θs, θi; z) in the near
field regions. We make use of the fact that for θi = 0,
P (θs, θi; z) is maximum at θs = 0. Therefore, we have

Pmax(θs, θi = 0; z) =
P0

[C +D]3/2
. (14)

We next find the value of θs at which P (θs, θi; z) =
Pmax(θs, θi = 0; z)/2, in which case θs can be taken as
the half-width of the conditional angle probability distri-
bution function. We thus equate

P (θs, θi; z) = Pmax(θs, θi = 0; z)/2

or,
P0

[C +D cos θs]3/2
=

P0

2[C +D]3/2

or, C +D cos θs = 22/3(C +D) (15)

Solving the above equation, we get two solutions for θs:

θ(+)
s = cos−1

[

(22/3 − 1)
C

D
+ 22/3

]

and θ(−)
s = − cos−1

[

(22/3 − 1)
C

D
+ 22/3

]

. (16)

The angle uncertainty ∆(θs|θi; z) can therefore be writ-
ten as

∆(θs|θi; z) = θ(+)
s − θ(−)

s

= 2 cos−1

[

(22/3 − 1)
C

D
+ 22/3

]

. (17)

Using the approximation cos−1 x =
√

2(1− x) for x ∈
[0, 1], we write the above uncertainty as:

∆(θs|θi; z) = 2

√

2(22/3 − 1)

[

−C

D
− 1

]

. (18)

Substituting for C/D from Eq. (12), we obtain

∆(θs|θi; z) = 4
√

22/3 − 1×
√

z2

k2σ2
0w

2
0 − z2

. (19)
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In the near-field regions, we have k2σ2
0w

2
0 ≫ z2. There-

fore, we can write the angle uncertainty in the near-field
regions as

∆(θs|θi; z) ≈
4
√
22/3 − 1

kσ0w0
z. (20)

Thus in the near-field regions the angle uncertainty in-
creases linearly with z. In the far-field, we use the fact
that for θi = 0, P (θs, θi; z) is maximum at θs = π.
Therefore, in the far-filed we have Pmax(θs, θi = 0; z) =
P0/[C − D]3/2. Now, proceeding in the similar manner
as above, and using the far-field approximation z2 ≫
k2σ2

0w
2
0 , we find the angle uncertainty in the far-field re-

gions to be

∆(θs|θi; z) ≈ 4
√

22/3 − 1kσ0w0
1

z
(21)

We thus find that in the far-field region the angle un-
certainty ∆(θs|θi; z) becomes inversely proportional to z
and as a consequence decreases upon propagation. Figure
2(b) shows the numerically calculated conditional angle
uncertainty ∆(θs|θi; z) as a function of z. The two dotted
lines in Fig. 2(b) show the z-scaling of the uncertainty in
the near- and far-field regions.

II. Calculation of conditional momentum and

OAM uncertainties

Using the two-photon wave-function in the position ba-
sis ψ(ρs,ρi; z) calculated in the previous section, we cal-
culate the two-photon wave-function ψ(ρs,ρi; z) in the
transverse momentum basis, which is given by [3]

ψ(ps,pi; z) = A exp

[

−|ps + pi|2w2
0

4~2

]

× exp

[

−|ps − pi|2σ2
0

4~2

]

exp

[

− iz

k~2
|p2

s + p
2
i |
]

, (22)

where ps ≡ (psx, psy) and pi ≡ (pix, piy) are the trans-
verse momenta of the signal and idler photons, respec-
tively. Using the above equation, we find that the
conditional momentum probability distribution function
P (ps|pi; z) of the signal photon is given by

P (ps|pi; z) = A exp

[

−p
2
s(w

2
0 + σ2

0)

2~2

]

, (23)

where p2s = |ps|2. The standard deviation of P (ps|pi; z)
in the y-direction ∆(psy|piy ; z) is the conditional momen-
tum uncertainty of the signal photon. The above equa-
tion shows that P (ps|pi; z) is independent of z and that
∆(psy|piy ; z) does not change upon propagation.
For a Gaussian pump the two-photon state produced

by SPDC in the OAM basis can be written as [5, 6]

|Ψ〉 =
∞
∑

ls=−∞

√

Sls |ls〉s| − ls〉i, (24)

where ls~ and −ls~ are the OAMs of signal and idler
photons, respectively. The form of the two-photon state
above implies that if the signal photon is detected with
OAM ls~, then the idler photon is guaranteed to be
detected with OAM −ls~. For the above state, and
with li = 0, the conditional two-photon OAM prob-
ability distribution function takes the following form:
P (ls|li; z) = Slsδls,0. This implies that the corresponding
conditional OAM uncertainty ∆(ls|li; z) is equal to zero.
However, in an experimental situation, one always mea-
sures ∆(ls|li; z) to be non-zero [6]. There are several rea-
sons for this, which includes the pump not being an ideal
Gaussian beam, the experimental imperfections such as
misalignment and background noise, and the mode de-
pendent detection efficiencies of OAM detectors. These
cause an additional contribution in P (ls|li; z) measure-
ment. Therefore, in our experiments, we model the con-
ditional OAM probability distribution function as:

P (ls|li; z) = Slsδls,0 +N exp

[

− l2s
2σ2

f

]

, (25)

where S0, σf and N are the fitting parameters. We take
the width of P (ls|li; z) as the conditional OAM uncer-
tainty ∆(ls|li; z).

III. Coincidence Measurement with EMCCD

camera

In this section we outline how we use an Andor iXon
Ultra-897 EMCCD camera having 512 × 512 pixel grid
with 16 × 16 µm2 pixel-size for measuring coincidence
counts in position and angle bases. For this, we record
106-107 images of the SPDC field with an exposure time
of 1 ms - 5 ms over a few hours with average flux of 0.5
- 2.0 photons per pixel. We operate the camera at -60

◦

C
with the electron-multiplication gain of 1000, the hori-
zontal pixel readout rate of 5-17 MHz, the vertical pixel
shift speed of 0.3 µs, and the vertical clock amplitude of
+4V. In SPDC, a signal and idler photon pair gets gener-
ated within a very short time interval, usually of the order
of 100 fs, which is much smaller than the exposure time
(1− 5 ms) of the EMCCD camera. Therefore, in all like-
lihood, the signal and idler photons belonging to a pair
arrive within the same image. However, within the same
image, we can also have signal and idler photons that are
not from the same down-conversion pair. These give rise
to the accidental coincidences, which between the pixels
(or pixel groups) p and q can be estimated by computing
the coincidence counts between kth and (k+1)th images.
Therefore, as detailed in Ref. [7, 8], the true coincidence
count Cpq between two pixels or two groups of pixels, p
and q, of the EMCCD camera can be expressed as

Cpq =
1

N

N
∑

k=1

n(k)
p n(k)

q − 1

N

N
∑

k=1

n(k)
p n(k+1)

q , (26)



5

    
    

All 

coincidences 

  Accidental 

coincidences

y
s

y
i

y
i

y
s Subtract

(a)

EMCCD images 

(b) (c)

y
s

y
i ¢(y

s
|y

i
)

k

y
s

y
i

P (ys, yi; z)
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Eq. (27), respectively. Subtraction of these two terms gives
(c) the measured two-photon position probability distribution
function P (ys, yi; z).
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FIG. 4. (a) Acquired images of SPDC field and binning the
pixels into signal angular sector θs and idler angular sector θi.
(b) The top and the bottom images represent the total coinci-
dence and the accidental coincidence calculated using the first
and the second terms of Eq. (28), respectively. Subtraction
of these two terms gives (c) the measured two-photon angle
probability distribution function P (θs, θi; z).

where the first term is the coincidence due to down-
converted pairs and the second term is the accidental
coincidence.
For measuring the two-photon position probability dis-

tribution function P (ys, yi; z), we take millions of images
using the EMCCD camera. For each image, we group
the pixels into horizontal strips, ys and yi, as shown in
Fig. 3(a). The coincidence count between ys and yi can
be written using Eq. (26) as

Cysyi
=

1

N

N
∑

k=1

n(k)
ys
n(k)
yi

− 1

N

N
∑

k=1

n(k)
ys
n(k+1)
yi

, (27)

where n
(k)
ys

and n
(k)
yi

are the photon counts of ys and yi
respectively. The top image in Fig. 3(b) represents total
coincidence as a function of ys and yi, and it is evalu-

ated by using the first term of Eq. (27). The bottom
image in Fig. 3(b) represents the accidental coincidence
as a function of ys and yi, and it is evaluated using the
second term of Eq. (27). The difference of these two im-
ages is proportional to the true coincidence Cysyi

and
thus to the two-photon position probability distribution
function P (ys, yi; z), as shown in Fig. 3(c). At ys = yi,
the correlation becomes artificially perfect because we are
correlating a pixel with itself. So, we discard the points
with ys = yi as outliers.
For measuring the two-photon angle probability dis-

tribution P (θs, θi; z), we group the pixels for each image
into angular sectors as shown in Fig. 4(a). The coinci-
dence count between the angular sectors at θs and θi is
given by:

Cθsθi =
1

N

N
∑

k=1

n
(k)
θs
n
(k)
θi

− 1

N

N
∑

k=1

n
(k)
θs
n
(k+1)
θi

, (28)

where n
(k)
θs

and n
(k)
θi

are the photon counts of angular sec-

tors θs and θi respectively. The top image in Fig. 4(b)
represents the total coincidence as a function of θs and
θi, and it is evaluated using the first term of Eq. (28).
The bottom image in Fig. 4(b) represents the accidental
coincidence as a function of θs and θi, and it evaluated
using the second term of Eq. (28). The difference of these
two images is proportional to the two-photon angle prob-
ability distribution P (θs, θi; z), as shown in Fig. 4(c). At
θs = θi, the correlation becomes artificially perfect be-
cause we are correlating a pixel with itself. So, we discard
the points with θs = θi as outliers.

IV. Measurement of the two-photon position and

angle probability distribution function

Figure 5(a) shows the experimentally measured
two-photon position probability distribution function
P (ys, yi; z) at different z. For imaging the transverse
planes between z = 0.35 cm and z = 1.5 cm, we keep
the magnification of the imaging system to be 1 while for
imaging the transverse planes between z = 10 and z = 60
cm, we keep the magnification to be 0.25. We scale
the measured P (ys, yi; z) such that its maximum value is
equal to one. We find that the photons are correlated in
position in the near field whereas they get position anti-
correlated in the far-field. In order to extract ∆(ys|yi; z)
from the measured P (ys, yi; z), we fit P (ys, yi; z) with
the function: Pf (ys, yi; z) = bPr(ys, yi; z)+aPn(ys, yi; z),
where Pr(ys, yi; z) = exp[−(ys + yi − d)2/(2σ2

1(z))] ×
exp[−(ys − yi − f)2/(2σ2

2(z))] is considered as the prob-
ability distribution due to the down-converted pho-
tons, while Pn(ys, yi; z) = exp[−(ys + yi − d)2/(2n2)] ×
exp[−(ys − yi − f)2/(2m2)] is considered as the noise
contribution. Here b, a, σ1(z), σ2(z), d, f , m and n
are the fitting parameters. We consider n ≫ σ1(z),
m ≫ σ2(z) such that the noise contribution remains
much broader than the two-photon position probability
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FIG. 5. (a) and (b) show the experimentally measured two-photon position and angle probability distribution P (ys, yi; z)
and P (θs, θi; z) as a function of the propagation distance z. (c) and (d) show the plots of the position and angle uncertainties
∆(ys|yi; z) and ∆(θs|θi; z) as a function of z. The experimental points are shown with solid dots while the solid curve represents
the theoretical predictions.

distribution. The width ∆(ys|yi = 0; z) can now be ex-

pressed as ∆(ys|yi = 0; z) = σ1(z)σ2(z)/
√

σ2
1(z) + σ2

2(z).
Figure 5(c) shows ∆(ys|yi = 0; z) as a function of z.
The theory plot has been calculated using the expression
given in Eq. (2).

Figure 5(b) shows the experimentally measured
P (θs, θi; z) at different z. We scale P (θs, θi; z) such that
its maximum value is equal to one. The P (θs, θi; z) plots
show that near the crystal plane the signal and idler pho-
tons have the highest probability of arriving at the same
angular positions. However in the far-field the two pho-
tons are most likely to arrive at angular positions sepa-
rated by π radians. We fit the measured P (θs, θi; z) with
the analytic function: Pf (θs, θi; z) = bPr(θs, θi; z) + a,

where Pr(θs, θi; z) = 1/(1 + q cos(θs − θi − c))3/2. Here,
b, a, q, and c, are the fitting parameters. We derive the
fitting function by putting rs = ri in Eq. (4). Next, we
evaluate ∆(θs|θi; z) by finding the standard deviation of
Pr(θs|θi; z) at various z values. Figure. 5(d) shows the
experimental ∆(θs|θi; z) as a function of z. We find that
near the crystal ∆(θs|θi; z) increases as a function of z.
However, beyond z = 10 cm, ∆(θs|θi; z) starts to mono-
tonically decreas as a function of z. The theory plot has

been calculated using the expression given in Eq. (4). We
see a good match between the theory and experiments.

V. Measurement of the two-photon momentum

and OAM probability distribution function

Equation (23) shows that P (ps|pi; z) is independent
of z and that ∆(psy|piy; z) does not change upon propa-
gation. For the given experimental parameters, the cal-
culated value of ∆(psy |piy; z) is 1.97~ mm −1. The two-
photon OAM probability distribution function P (ls, li; z)
remains unchanged as a function of z. We verify this
by making several measurements of P (ls, li; z) as a func-
tion of z. We plot the experimentally measured two-
photon OAM probability distribution function P (ls, li; z)
and the conditional OAM probability distribution func-
tion P (ls|li; z) at z = 50 cm in Figs. 6(a) and 6(b), re-
spectively. As described in Sec. II, we fit the conditional
distribution with the analytical function P (ls|li; z) =

Slsδls,0 + N exp
[

−l2s/(2σ2
f)
]

, where S0, N and σf are

the fitting parameters, and thus find the uncertainty
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on the noise model described in Eq. (25).

∆(ls|li; z) to be 0.72~ in our experiments.

VI. Measurement of the two-photon angle

probability distribution function in turbulence

In this section, we present how the conditional angle
uncertainty propagates after the two-photon field passes
through turbulence. Figure 7(a) illustrates the propaga-
tion of SPDC photons through a planar turbulence kept
at a distance z = d from the crystal plane located at
z = 0. We are interested in finding the two-photon angle
probability distribution function at a propagation dis-
tance z. The presence of turbulence introduces statisti-
cal randomness in the two-photon field, and so we need
to describe the field propagation in terms of the two-
photon cross-spectral density function. From z = 0 up
to z = d, the two photon field remains pure and can be
described by the two-photon wave-function ψ(ρs,ρi; z).
Therefore, the two-photon cross-spectral density function
W (ρ′

s1,ρ
′
i1,ρ

′
s2,ρ

′
i2; zt) right after the turbulence plane

z = d can be written as

W (ρ′
s1,ρ

′
i1,ρ

′
s2,ρ

′
i2; d)

= ψ∗(ρ′
s2,ρ

′
i2; d)ψ(ρ

′
s1,ρ

′
i1; d)

×Wturb(ρ
′
s1,ρ

′
s2,ρ

′
i1,ρ

′
i2), (29)

where, ρ′
s ≡ (x′s, y

′
s), and ρ

′
i ≡ (x′i, y

′
i) are the transverse

co-ordinates of signal and idler photons respectively, at
z = d. The term ψ∗(ρ′

s2,ρ
′
i2; d)ψ(ρ

′
s1,ρ

′
i1; d) is the two-

photon cross spectral density function right before the
turbulence plane. The effect due to the turbulence is cap-
tured through the cross-spectral density function, which
we approximate by modelling the turbulence in terms
of a Gaussian function: Wturb(ρ

′
s1,ρ

′
s2),ρ

′
i1),ρ

′
i2) =

exp
[

−[|ρ′
s2 − ρ

′
s1|2 + |ρ′

i2 − ρ
′
i1|2]/(2r2)]

]

, where r is the
turbulence strength [9, 10]. We rewrite the above equa-

tion as

W (ρ′
s1,ρ

′
i1,ρ

′
s2,ρ

′
i2; d) =Wturb(ρ

′
s1,ρ

′
s2,ρ

′
i1,ρ

′
i2)

× e
ik

2d (ρ
′2
s2+ρ′2

i2−ρ′2
s1−ρ′2

i1)

∫

ψ∗(ρ′′
s1,ρ

′′
i1; 0)ψ(ρ

′′
s2,ρ

′′
i2; 0)

× e
ik

2d (ρ
′′2
s2 +ρ′′2

i2 −ρ′′2
s1 −ρ′′2

i1 )e−
ik

d
(ρ′

s2·ρ
′′

s2−ρ
′

s1·ρ
′′

s1)

× e−
ik

d
(ρ′

i2·ρ
′′

i2−ρ
′

i1·ρ
′′

i1)dρ′′
s2dρ

′′
s1dρ

′′
i2dρ

′′
i1, (30)

where ψ(ρ′′
s ,ρ

′′
i ; 0) is the two-photon wave-function at the

crystal plane z = 0 and is given by Eq. (1). Now, by prop-
agating W (ρ′

s1,ρ
′
i1,ρ

′
s2,ρ

′
i2; d) from z = d up to z = z,

we find the two-photon cross-spectral density function at
z and thereby the two-photon position probability distri-
bution function P (ρs,ρi; z):

P (ρs,ρi; z) =

∫

W (ρ′
s1,ρ

′
i1,ρ

′
s2,ρ

′
i2; zt)e

ik

2(z−d)
(ρ′2

s2+ρ′2
i2)

× e−
ik

2(z−d)
(ρ′2

s1+ρ′2
i1)e−

ik

(z−d)
ρs·(ρ

′

s2−ρ
′

s1)e
ik

(z−d)
ρi·(ρ

′

i2−ρ
′

i1)

× dρ′
s2dρ

′
s1dρ

′
i2dρ

′
i1. (31)

By substituting Eq. (30) into Eq. (31), we compute
P (ρs,ρi; z) as a function of z. We then use the
transformations ρs = (rs cos θs, rs sin θs) and ρi =
(ri cos θi, ri sin θi) in order to obtain P (θs, θi; z) using
Eq. (4).
Figure 7(c) shows the experimentally measured

P (θs, θi; z) at different z (see Sec. IV for the measurement
details). Figure 7(b) shows the P (θs, θi; z) calculated us-
ing Eq. (4) at different z for the relevant experimental
parameters of d = 15 cm, L = 5 mm, w0 = 507 µm. For
the theoretical plots, we use the turbulence strength r as
a fitting parameter and find its value to be 0.125 mm.
We note that the experimentally measured P (θs, θi; z)
contains some noise distribution, which gets prominent
at large z. This can be attributed to the fact that in
the experiment, we insert a distributed turbulence in the
path of the two-photon field, whereas in the theory, we
approximate that as a planar turbulence. Nevertheless,
the diagonal correlation in the experimentally observed
P (θs, θi; z) matches with the theoretical predictions. Us-
ing the procedure described in Sec. IV B, we extract the
conditional angle uncertainty ∆(θs|θi; z) from Figure 7(c)
and plot them in Figure 7(d). In order to minimize the ef-
fect of noise distribution on the estimation of ∆(θs|θi; z),
we select a region of P (θs, θi; z) as shown by the dotted
red box in Fig. 7(c).

VII. Measurement of the two-photon OAM

probability distribution in turbulence

In this section, we present a theoretical model to eval-
uate the influence of turbulence on the conditional OAM
distribution P (ls|li; z). Within paraxial approximation
and the Gaussian pump beam assumption [5, 6], the
OAM remains conserved in SPDC. This means that if
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FIG. 7. (a) Illustrating the propagation of the down-converted field in the presence of turbulence. (b) Theoretically calculated
and (c) experimentally measured two-photon angle probability distribution function P (θs, θi; z) at various z in the presence of
turbulence. (d) The theoretical and experimental plots of ∆(θs|θi; z) as a function of z.

the idler photon is detected with OAM li~ = 0, the
signal photon is guaranteed to be detected with OAM
ls~ = 0. Such a signal mode can be represented as:
ψs(ρ

′
s) = exp

[

−ρ′2s /4σ2
r

]

. For evaluating the influ-
ence of turbulence on the conditional OAM distribu-
tion P (ls|li = 0; z) of the signal photon, we simply
need to evaluate how the Gaussian mode ψs(ρ

′
s) =

exp
[

−ρ′2s /4σ2
r

]

gets affected by turbulence. For this pur-
pose, we calculate the cross-spectral density function of
the signal photon right after the turbulence plane z = d
[see Fig. 7(a)]. From z = 0 up to z = d, the signal
field ψs(ρ

′
s) remains pure. Therefore, the cross-spectral

density function W (ρ′
s2,ρ

′
s1; d) right after the turbu-

lence plane z = d can be written as W (ρ′
s2,ρ

′
s1; d) =

ψ∗(ρ′
s2; d)ψ(ρ

′
s1; d)Wturb(ρ

′
s2,ρ

′
s1), where ρ

′
s ≡ (x′s, y

′
s),

is the transverse co-ordinates of signal photon at z =
d plane. The term ψ∗(ρ′

s2; d)ψ(ρ
′
s1; d) is the cross

spectral density function of the signal photon at z =
d right before the turbulence plane. Wturb(ρ

′
s2,ρ

′
s1)

is the cross-spectral density introduced by the tur-
bulence. We approximate it as Wturb(ρ

′
s2,ρ

′
s1) =

exp
[

−|ρ′
s2 − ρ

′
s1|2/(2r2)

]

, where r is the turbulence
strength. Therefore, we have

W (ρ′
s2,ρ

′
s1; d) = exp

[

−ρ
′2
s1 + ρ′2s2
4σ2

r

]

exp

[

−|ρ′
s2 − ρ

′
s1|2

2r2

]

.
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FIG. 8. The experimentally measured P (ls|li; z) at z = 50
cm in turbulence. The fitting is based on the noise model
described in Eq. (34).

Now, by propagating the above cross-spectral density
function from z = d to z = z, we obtain the cross-spectral
density function W (ρs1,ρs2; z) at z = z

W (ρs1,ρs2; z) = exp

[

− ik

2R(z)
(ρ2s2 − ρ2s1)

]

× exp

[

−ρ
2
s1 + ρ2s2
4σ2

r(z)

]

exp

[

− ∆ρ2s
2r2(z)

]

, (32)
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where ∆ρs = |ρ2 − ρ1|, r(z) = r

√

1 +
(

z−zt
ksσrδ

)2

, σr(z) =

σr

√

1 +
(

z−zt
ksσrδ

)2

, 1
δ2 = 1

r2 + 1
4σ2

r

, and ks = π/λp.

We use the transformation ρs1 ≡ (rs1 cos θs1, rs1 sin θs1)
and ρs2 ≡ (rs2 cos θs2, rs2 sin θs2) in order to write
W (ρs1,ρs2; z) as Ws(rs, θs1, θs2; z). The OAM distri-
bution of the signal photon is same as the conditional
distribution P (ls|li = 0; z), which we write as

P (ls|li = 0, z) =

∫∫∫

rsWs(rs, θs1, θs2; z)e
ils(θs2−θs1)

× drsdθs1dθs2. (33)

We compute the above integral numerically and find that
it very closely fits the function a exp [−b|ls|], where a and
b are fitting parameters. We also find that P (ls|li; z) does
not depend on z after propagating through turbulence.
We thus write the conditional OAM distribution as

P (ls|li, z) = a exp [−b|ls|] + N exp

[

− l2s
2σ2

f

]

. (34)

Here, we have added the noise term, for reasons described
in section II. Figure 8 shows the experimentally mea-
sured P (ls|li; z) at z = 50 cm. We fit P (ls|li; z = 50)
with Eq. (34) and obtain the experimental uncertainty
∆(ls|li; z) to be 0.94~ radian−1.
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