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Abstract
We construct a generalized version of the photon-subtracted squeezed vacuum
states (PSSVS), which can be utilized to construct the same for nonlinear,
deformed and any usual quantum mechanical models beyond the harmonic
oscillator. We apply our general framework to trigonometric Pöschl–Teller
potential and show that our method works accurately and produces a proper
nonclassical state. We analyze the nonclassicality of the state using three differ-
ent approaches, namely, quadrature squeezing, photon number squeezing and
Wigner function and indicate how the standard definitions of those three tech-
niques can be generalized and utilized to examine the nonclassicality of any
generalized quantum optical states including the PSSVS. We observe that the
generalized PSSVS are always more nonclassical than those arising from the
harmonic oscillator. Moreover, within some quantification schemes, we find
that the nonclassicality of the PSSVS increases almost proportionally with the
number of photons subtracted from the generalized squeezed vacuum state.
Thus, generalized PSSVS may provide an additional freedom with which one
can regulate the nonclassicality and obtain an appropriate nonclassical state as
per requirement.

Keywords: photon subtracted squeezed vacuum states, nonclassicality, Wigner
function, quadrature squeezing, photon statistics

(Some figures may appear in colour only in the online journal)

1. Introduction

Wigner function is an excellent framework for the study of quantum optical states. States with

Gaussian Wigner function have certain applications in quantum information processing and

they have been studied extensively in the literature. More recent studies show that the states
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with non-Gaussian Wigner function are also very important in the field, especially those having
a negative Wigner function. Negativity in Wigner function is a sufficient condition for nonclas-
sicality and the associated states are extremely useful in entanglement distillation [1], quantum
computing [2], etc. Several important non-Gaussian states have been studied and are found to
exist in real life. For instance, in [3], the authors revealed an experimental method for preparing
non-Gaussian states from a single mode squeezed light using the homodyne detection tech-
nique. A similar technique was utilized to detect a single-photon state in [4]. Alongside several
theoretical studies to detect two-photon [5, 6] and three-photon [7] nonclassical states, there
are plenty of experimental results for the preparation of various nonclassical states including
Schrödinger cat states [8], squeezed states [9], photon-subtracted squeezed/squeezed vacuum
states [10], etc.

While standard quantum optical non-Gaussian states have immense importance, a lot of
recent studies indicate that the generalized quantum optical states play an important role in
quantum information processing, see; for instance [11, 12] for some reviews on the devel-
opment. Generalization to quantum optics can be performed in various ways, some of the
well-known approaches include the nonlinear generalization [13–15], q-deformation [16, 17],
etc. A common goal in all such frameworks is to construct the quantum optical states for other
quantum mechanical potentials apart from the harmonic oscillator. One of the notable useful-
nesses of generalizing the quantum optical models is that it brings in additional degrees of
freedom to the system by which one can improve several crucial properties of the system [18].
More importantly, it has been shown that generalized nonclassical states provide higher degree
of nonclassicality compared to the usual nonclassical states [19–21], which can be exploited
to enhance the quantum entanglement of various nonclassical states within some protocols
[22–24]. The usage of the generalized quantum optical states is not limited to the theoretical
studies but there have been ample experimental investigations based on Kerr type nonlinear
cavities [25–27].

In this article, we construct a class of non-Gaussian nonclassical states, namely the photon-
subtracted squeezed vacuum sates (PSSVS) arising from the generalized framework. We pro-
vide a generic analytical prototype which can be utilized to construct generalized PSSVS for
any nonlinear, deformed and quantum mechanical models. As per the definition, the states are
bound to exhibit nonclassical properties, which we verify using several independent methods,
namely, quadrature squeezing, photon distribution function and negativity in Wigner function.
One of the striking features of such states is that the nonclassicality increases proportionally
with the number of photons being subtracted from the states, which is visible evidently in
two of our approaches, the number squeezing and the Wigner function. Therefore, such states
may be employed methodically to produce more nonclassicality compared to the generalized
squeezed vacuum states. We also notice that the generalized PSSVS are always more nonclassi-
cal than those emerging from the harmonic oscillator potential, and such a phenomenon occurs
consistently in all three given methods. Thus, we believe that such states will be a compelling
successor for quantum information theories in many aspects.

In section 2, we describe the methodology for the construction of generalized PSSVS along
with a complete analytical description of the states. Section 3 is composed of the solution of the
Pöschl–Teller potential and a contemporary procedure for extracting the required information
for the construction of the PSSVS for a particular generalized potential. We, then, provide a
detailed analysis of various nonclassical features of the PSSVS of the Pöschl–Teller potential
in section 4. Finally, our conclusions are stated in section 5.
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2. Generalized photon-subtracted squeezed vacuum

PSSVS can be constructed by subtracting single or multiple number of photons from the
squeezed vacuum states [28]. Before moving to the full fledged construction of generalized
PSSVS, let us commence with the discussion of the method of construction of the harmonic
oscillator squeezed vacuum states |ζ〉. Usually, it follows from the operation of the squeez-
ing operator Ŝ(ζ) = exp[(ζ∗â2 − ζâ†2

)/2] on the vacuum state |0〉 and the result is entirely
equivalent to that obtained from the following definition [29]

(âμ+ â†λ)|ζ〉 = 0, (1)

with μ = cosh r and λ = eiθ sinh r. Here, the squeezing parameter ζ is represented in the polar
form ζ = reiθ. Note that the relation (1) does not originate from an independent source, rather,
it is a byproduct of the first definition |ζ〉 = Ŝ(ζ)|0〉. It is worth mentioning that several mixed
terminologies are used for such states in the literature, for example, in [28], the authors claim
that they study the squeezed states, however, originally they have studied the squeezed vacuum
states. We stay clear of this confusion by specifying the states as follows. We attribute the name
‘squeezed vacuum states’ to the states that are generated by the action of the squeezing operator
Ŝ(ζ) on the vacuum state |0〉, i.e. |ζ〉 = Ŝ(ζ)|0〉. However, when we refer the ‘squeezed states’,
we mean the states originating from the operation of the squeezing operator on the coherent
states |α〉 instead, viz |ζ,α〉 = Ŝ(ζ)|α〉. In this article, we study the generalization of squeezed
vacuum states |ζ〉. Nevertheless, the first step toward the generalization is to find a general set
of ladder operators Â ≡ â f (n̂) = f (n̂ + 1)a, Â† ≡ f (n̂)â† = â† f (n̂ + 1), whose action on the
Fock states can be realized as follows

Â|n〉 =
√

n f (n)|n − 1〉,

Â†|n〉 =
√

n + 1 f (n + 1)|n + 1〉,
(2)

so that the number operator of the generalized system can be considered as Â†Â ≡ n̂ f 2(n̂).
Here f (n̂) is an operator valued function of the harmonic oscillator number operator n̂ ≡ â†â
and, it is an entirely general function. The exact expression of f (n̂) can be extracted from the
knowledge of the eigenvalues of the corresponding Hamiltonian assuming that it can be fac-
torized in terms of the generalized number operator Â

†
Â. Any constant terms that may appear

in the Hamiltonian can be realized by a proper rescaling of the eigenvalues of the composite
system containing Â and Â

†
. Thus, the knowledge of the eigenvalues of any quantum mechan-

ical Hamiltonian will ensure the explicit form of the function f (n). The method is usually
familiar as the nonlinear generalization [13–15] and the endeavor has been accepted widely;
see, for instance [30–36]. However, a direct replacement of the generalized ladder operators
(2) in (1) does not necessarily yield the generalized PSSVS, rather, the resulting state is some
other state whose name is not known to us. Indeed there exist some studies where the gen-
eralized ladder operators (2) have been used directly in (1), see; for instance [37], however,
the results following such an approach may be regarded incorrect. Notice that the relation
(Âμ+ Â

†
λ)|ζ, f 〉 = 0 does not originate from the original definition of generalized squeezed

vacuum states, i.e. |ζ , f 〉 = Ŝ(ζ, f )|0〉. This is because the generalized ladder operators satisfy
the commutation relation

[Â, Â†] = (n̂ + 1) f 2(n̂ + 1) − n̂ f 2(n̂), (3)

and, thus, the generalized squeezing operator Ŝ(ζ, f ) = exp[(ζ∗Â2 − ζÂ†2
)/2] can no longer

be disentangled. Therefore, it is impossible to reach to the definition (Âμ+ Â
†
λ)|ζ, f 〉 = 0

3
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from the original definition |ζ , f 〉 = Ŝ(ζ, f )|0〉. To overcome this problem, let us introduce
a set of auxiliary ladder operators B̂ = â[1/ f (n̂)] = [1/ f (n̂ + 1)]a and B̂† = [1/ f (n̂)]â† =
â†[1/ f (n̂ + 1)] resulting to a new set of commutation relations [Â, B̂†] = [B̂, Â†] = 1. There-
fore, one can consider a new set of conjugate ladder operators Â, B̂† or B̂, Â† which will
allow the disentanglement of the squeezing operator. The method was introduced in [38]
in order to explore a new type of coherent states which become compatible with both of
the definitions of nonlinear coherent states, |α, f 〉 = D̂(α, f )|0〉 and A|α, f 〉 = α|α, f 〉, with

D(α, f ) = exp[αÂ
† − α∗Â] being the optical displacement operator.

Let us now describe an appropriate way to construct the generalized squeezed vacuum states.
We define the squeezed vacuum as

|ζ, f 〉 = Ŝ(ζ, f )|0〉 = e
1
2 (ζ∗Â2−ζB̂†2

)|0〉, (4)

which leads to the alternative definition

(Âμ+ B̂†λ)|ζ, f 〉 = 0, (5)

with μ = cosh r and λ = eiθ sinh r. It is straightforward to check that the relation (4) leads to
(5). Considering the state |ζ, f 〉 to be residing in the photon number space |n〉, we can decom-
pose the state in the Fock basis, i.e. |ζ, f 〉 =

∑∞
n=0 Cn, f |n〉. Thereafter, using this expression

in (5), we obtain the recursion relation for the expansion coefficients

Cm+1, f = − eiθ tanh r
f (m) f (m + 1)

√
m

m + 1
Cm−1, f , (6)

which when solved in the even basis, we obtain the required state as follows

|ζ, f 〉 = 1
Nζ, f

∞∑
n=0

(−1)n einθ(tanh r)n
√

(2n)!
2nn! f (2n)!

|2n〉. (7)

The normalization constant is given by

N 2
ζ, f =

∞∑
n=0

(2n)!(tanh r)2n

4n(n!)2[ f (2n)!]2
. (8)

Note that the solution of (6) in the odd basis will lead to the generalized squeezed first excited
state and we are not interested in it. We shall rather explore the effects of the photon subtraction
from the generalized squeezed vacuum states (7).

The generalized PSSVS can, in principle, be constructed by subtracting m number of pho-
tons from the squeezed vacuum states (7), i.e. by operating Â

m
on the state |ζ , f 〉. However,

subtraction of arbitrary number of photons will impose a restriction on the state that 2n − m
has to be positive. We can avoid such a restriction by studying the states in even and odd bases
separately and the closed forms of the generalized PSSVS are given by

|ζ, f , m〉e = Â2 m|ζ, f 〉 = 1
N e

ζ, f ,m

∞∑
n=0

(− tanh r)keikθ(2k)!
2kk!

√
(2n)! f (2n)!

|2n〉, (9)

4
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and

|ζ, f , m〉o = Â2 m+1|ζ, f 〉 = 1
N o

ζ, f ,m

∞∑
n=0

(− tanh r)k′eik′θ(2k′)!
2k′k′!

√
(2n + 1)! f (2n + 1)!

|2n + 1〉,

(10)

with the normalization constants being

[
N e

ζ, f ,m

]2
=

∞∑
n=0

(tanh r)2k[(2k)!]2

4k(k!)2(2n)![ f (2n)!]2
, (11)

[
N o

ζ, f ,m

]2
=

∞∑
n=0

(tanh r)2k′[(2k′)!]2

4k′(k′!)2(2n + 1)![ f (2n + 1)!]2
, (12)

where k = m + n and k′ = k + 1. Here m is absolutely arbitrary and replacement of m = 0 in
(9) and (10) yield the squeezed vacuum states and single PSSVS, respectively.

3. The model

The formalism that we have proposed here is entirely general and, thus, it can be applied to
any quantum mechanical, nonlinear or even to any deformed quantum mechanical scenarios.
The only task is to extract the value of the function f (n) from the given model. In this article,
we shall utilize the standard solutions of the trigonometric Pöschl–Teller potential and show
how one can construct the PSSVS for such a systems and explore their nonclassical properties.
The explicit form of the potential is [39]

V(x) =
�

2

8ma2

[
λ(λ− 1)
cos2 x

2a

+
κ(κ− 1)

sin2 x
2a

− (λ+ κ)2

]
, (13)

and the corresponding eigenvalues and eigenfunctions are given by

ψn(x) =N (κ,λ)
(

cos
x

2a

)λ(
sin

x
2a

)κ

×2F1

(
−n, n + λ+ κ;κ+

1
2

; sin2 x
2a

)
,

(14)

En =
�

2

2ma2
n(n + λ+ κ). (15)

The above solutions are readily available in the literature, see; for instance, [39]. One of the
reasons behind choosing such a model for our analysis is that it is an interesting variant of
potential well describing many physical systems, particularly, many body systems in atomic
and molecular physics. Pöschl–Teller potential is a more interesting model compared to the
usual infinite potential well, since it can provide deeper insights to some important formalisms
[39, 40], such as; defining the domain of the self-adjoint operators that are used in constructing
the potential, non-uniqueness of self-adjoint extensions, semi-classical nature as well as the
classical limit, exotic roles played by the boundary conditions, etc. Moreover, the potential
(13) comes out in a general form, and depending on the values of the parameters λ and κ, one
can modify it in different ways such that it becomes useful in various contexts. For instance,

5
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if one restricts 1/2 � λ < 1, one obtains an interesting potential being familiar as the Scarf
potential, which belongs to the category of inverted potential well. For further information in
this regard, one may refer; for instance [39].

In our analysis we have chosen λ = κ = 1.5 so that the potential (13) turns out to be a
symmetric Pöschl–Teller potential. As per our formalism, we can assume that the Hamiltonian
can be factorized in terms of the generalized ladder operators (2) as Ĥ = Â

†
Â to reproduce the

spectrum (15). Thus, the number operator can be considered as N̂′ = Â† Â = n̂ f 2(n̂), with

f (n) = (n + λ+ κ)1/2, (16)

which when replaced in (9) and (10) one obtains the even and odd PSSVS, respectively, for the
corresponding model. Note that, we have chosen the values of �, m and a in such a way that
the factor �2/2ma2 in (15) becomes unity. It is possible to realize the number operator in an
alternative way also, for instance, we can define it in the following way

N̂ =

[
Â†Â +

1
4

(λ+ κ)2

]1/2

− 1
2

(λ+ κ). (17)

There are several advantages against such a choice, firstly, N̂ in (17) becomes equivalent to
the usual photon number operator n̂ = â†â in the sense that N̂|n〉 = n̂|n〉 = n|n〉. That means
although the information of the generalized model is hidden inside N̂ in terms of f (n), it still
produces a physical photon, whereas N̂′ = Â†A does not. Owing to such an interesting physical
outcome, we are more interested in choosing the number operator given by (17) in the rest of
our analysis. Interestingly, we observe that the Hamiltonian can be factorized in terms of the
new number operator N̂ also as Ĥ = N̂(N̂ + λ+ κ) = Â†Â = N̂ f 2(N̂), with

f (N) = (N + λ+ κ)1/2, (18)

so that one can identify N̂ to be equivalent to n̂. Therefore, while choosing the function f (n) it
becomes immaterial whether one takes it from (16) or (18), physically they are same.

4. Signature of nonclassicality

Any states which are less classical than the coherent states are familiar as nonclassical states.
In other words, nonclassicality is a measure of quantumness of a state with reference to the
Glauber coherent state. In our analysis, our purpose is to explore the nonclassical properties of
generalized even and odd PSSVS and, we shall quantify the nonclassicality with respect to the
Glauber coherent states. Generalized coherent states are already known to be nonclassical [24,
41, 42] while measuring it with respect to the Glauber coherent states, thus, we do not measure
the nonclassicality of generalized PSSVS with respect to the generalized coherent states.

Among various existing methods of measuring nonclassicality, here we choose only three,
namely quadrature squeezing, photon number squeezing and Wigner quasi-probability distri-
bution function, which are based on three independent frameworks. A quantum optical state is
defined to be nonclassical if its nonclassicality is identified from at least one of the standard
methods. It is not always guaranteed that if a state is nonclassical based on a given framework,
it will be nonclassical with respect to the other methods. For instance, in [19], it was shown
that the quadratures of q-deformed coherent states are not squeezed, but the photon distribu-
tion is sub-Poissonian. Thus, the corresponding state was argued to be weakly nonclassical
compared to the Schödinger cat state, which was also explored in the same paper. Therefore, it
is legitimate to claim that if the nonclassicality of a state is detected from several independent

6
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Figure 1. Square of the uncertainties of X and P quadratures for even generalized PSSVS
for m = 1 in (a) and (d), r = 1 in (b) and (e) and θ = 0 in (c) and (f). In all the plots λ
and κ are chosen to be 1.5. The yellow surfaces in all the figures show the variation of
the RHS of the generalized Robertson uncertainty relation.

methods, it is more convincing that the state belongs to the category of stronger nonclassical
states. We analyze the nonclassical properties of generalized PSSVS arising from the three
methods as discussed in the following subsections. Since our state originates from the gener-
alized quantum optical framework, obviously we require some modifications of the standard
protocols of each of the procedures, which we discuss in detail in the respective subsections.

4.1. Squeezing in quadratures

First, we define the quadrature operators for the generalized system as X̂ = (Â + Â†)/
√

2 and
P̂ = (Â − Â†)/

√
2i so that they obey the generalized Robertson uncertainty relation

ΔX̂ΔP̂ � 1
2
|〈·|[X̂, P̂]|·〉 |. (19)

We are bound to replace the standard definition of the quadrature operators by the new
definition as mentioned above, since any observable out of our generalized system has to be
composed of the generalized ladder operators by construction. This, in turn, demands a modifi-
cation of the definition of the quadrature squeezing itself, since we have to deal with the factor
f (n) that are associated with the generalized ladder operators. The replacement of Heisen-
berg uncertainty relation by the Roberson uncertainty relation would accomplish the job, as
the RHS of generalized uncertainty relation (19) consists of the commutator [X̂, P̂] within
which the signature of the function f (n) is underlain. While computing (19) using the vac-
uum state, the square root of the RHS of (19) and each of the variances turns out to be equal,

viz ΔX̂ = ΔP̂ =
√
|〈0|[X̂, P̂]|0〉|/2 =

√
f (1)/2, and the same result can be obtained using

the deformed coherent states also [19]. However, this may be true only for certain coherent
states and it is not guaranteed to hold for any arbitrary generalized state. This is because the

7
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Figure 2. Square of the uncertainties of X and P quadratures for odd generalized PSSVS
for m = 3 in (a) and (d), r = 5 in (b) and (e) and θ = 0 in (c) and (f). In all the plots λ
and κ are chosen to be 1.5. The yellow surfaces in all the figures show the variation of
the RHS of the generalized Robertson uncertainty relation.

commutator [X̂, P̂] is not proportional to the identity operator in general, thus, the result of the
RHS of (19) is dependent on the state that is used to compute the expectation values. Therefore,
it is not guaranteed that the variances corresponding to the generalized PSSVS are necessarily
below to those of the vacuum state, as it happens in the case of harmonic oscillator. In our
case, the quadrature squeezing does not correspond to the case when the variance of any of the
quadratures becomes lower than the square root of the RHS of (19) for the vacuum state, but,
it corresponds to that of the particular state that is being studied, which is |ζ , f , m〉e/o in our
case.

In order to compute the quadrature squeezing analytically, we first need to compute the
expectation values of ladder operators Â, Â

†
and their squares using the states |ζ, f , m〉e/o. The

expectation values of Â and Â
†

for both even and odd PSSVS can clearly be understood to be
vanished, because, Â operating on the even/odd state will make it odd/even, which when is
overlapped with the even/odd state will surely lead to zero. The same reasoning can be applied
to Â

†
. Thus,

e/o〈ζ, f , m|Â|ζ, f , m〉e/o = 0, (20)

e/o〈ζ, f , m|Â†|ζ, f , m〉e/o = 0. (21)

The expectation values of the squares of Â, Â
†

are computed as follows

e〈Â2〉e =
−eiθ

N e2

ζ, f ,m

∞∑
n=0

(tanh r/2)2k+1(2k)!(2k + 2)!
k!(k + 1)!(2n)![ f (2n)!]2

, (22)

8
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o〈Â2〉o =
−eiθ

N o2

ζ, f ,m

∞∑
n=0

(tanh r/2)2k+3(2k + 2)!(2k + 4)!
(k + 1)!(k + 2)!(2n + 1)![ f (2n + 1)!]2

, (23)

with e〈Â†2〉e = e〈Â2〉∗e and o〈Â†2〉o = o〈Â2〉∗o. Finally, we compute

e〈ÂÂ†〉e =
1

N e2

ζ, f ,m

∞∑
n=0

2−2k[(2k)!]2(2n + 1)[ f (2n + 1)]2

(tanh r)−2k[k!]2(2n)![ f (2n)!]2
, (24)

e〈Â†Â〉e =
1

N e2

ζ, f ,m

∞∑
n=0

(tanh r/2)2k+2[(2k + 2)!]2

[(k + 1)!]2(2n + 1)![ f (2n + 1)!]2
, (25)

o〈ÂÂ†〉o =
1

N o2

ζ, f ,m

∞∑
n=0

[
(tanh r)2k+2[(2k + 2)!]2

22k+2[(k + 1)!]2(2n + 1)!
(2n + 2)[ f (2n + 2)]2

[ f (2n + 1)!]2

]
,

(26)

o〈Â†Â〉o =
1

N o2

ζ, f ,m

∞∑
n=0

(tanh r/2)2k+2[(2k + 2)!]2

[(k + 1)!]2(2n)![ f (2n)!]2
, (27)

so that the variance of the quadratures X̂ and P̂ can be calculated as (ΔX̂e/o)2 =

e/o〈X̂2〉e/o = (e/o〈ÂÂ†〉e/o + e/o〈Â†Â〉e/o + e/o〈Â2〉e/o + e/o〈Â†2〉e/o)/2 and (ΔP̂e/o)2 = e/o〈P̂2〉e/o =

(e/o〈ÂÂ†〉e/o + e/o〈Â†Â〉e/o − e/o〈Â2〉e/o − e/o〈Â†2〉e/o)/2, respectively. The numerical studies of
the variances for X̂ and P̂ quadratures with respect to different parameters are depicted in
figure 1 for even states and in figure 2 for the odd states. The yellow surfaces in each of the
plots represent the variation of the RHS of the generalized Robertson uncertainty relation.
Thus, any portion of the variances of the quadratures which falls below the yellow surface
clearly identifies the squeezing of quadrature. We observe that the quadratures are squeezed in
all the cases (at least partially in certain regime) except in figures 1(f) and 2(f), where we have
fixed the value of θ = 0. However, this is purely because of the choice of θ. If we would have
chosen the value of θ at around 4 (in the appropriate unit) to re-plot the figure 1(f), we would
have obtained the squeezing in P̂ quadrature also. This can be ensured by a careful observa-
tion of figure 1(e). A similar type of argument is also true for the figure 2(f). Nevertheless, we
notice that the variation of the quadrature is periodic in θ and one must choose the value of the
parameter θ appropriately to obtain the squeezing in both of the quadratures (of course, not at
the same time, but alternatively).

4.2. Photon statistics

The study of photon statistics in the generalized case also requires a modification over the stan-
dard method. Usually the photon number of a quantum optical state is said to be squeezed if the
distribution function corresponding to the state is sub-Poissonian and the signature of nonclas-
sicality/squeezing is easily captured by utilizing the Mandel parameter Q = 〈(Δn̂)2〉/〈n̂〉 − 1
[43]. Notice that when the distribution is Poissonian, i.e. 〈(Δn̂)2〉 = 〈n̂〉 (which is also the char-
acteristics of Glauber coherent states), the Mandel parameter turns out to be zero. A negative
Mandel parameter indicates a sub-Poissonian statistics of the photon distribution. Thus, a sim-
ple computation of the Mandel parameter can ensure the nature of the photon distribution of
any quantum optical state that originates from the bosonic ladder operators.
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Figure 3. Number squeezing Ne
s for even PSSVS for generalized cases f (n) =√

n + κ+ λ in (a) and (b) for λ = κ = 1.5, and for harmonic oscillator cases f (n) = 1
in (c) and (d).

A straightforward generalization of the Mandel parameter is carried out by replacing the
bosonic number operator n̂ with the generalized number operator N̂ as Qg = 〈(ΔN̂)2〉/〈N̂〉 − 1.
Alternatively, one can check whether the condition 〈(ΔN̂)2〉 < 〈N̂〉 is valid or not. In other
words, we can compute Ns = 〈(ΔN̂)2〉 − 〈N̂〉, and if it turns out to be negative, we can affirm
the nonclassicality of the state. Note that, at this point, people often get confused whether the
nonclassicality, within this formalism, is computed with respect to the generalized coherent
states or with respect to the Glauber coherent states. It is already known that the generalized
coherent states possess sub-Poissonian photon statistics [19, 24, 44] with the corresponding
Mandel parameter being Qg = 〈[Â, Â

†
]〉 − 1. It is also true that Qg is non-zero if we compute it

in the Glauber coherent state basis. Thus, it will be inappropriate to compare the nonclassicality
of generalized PSSVS with respect to any of the two types of coherent states. It is, rather,
more evident that the nonclassicality here is computed with respect to a state whose photon
distribution is Poissonian (Glauber coherent state in the standard harmonic oscillator basis
being one of the examples). With this note, we compute Ne/o

s = e/o〈(ΔN̂)2〉e/o − e/o〈N̂〉e/o by
using the following two expressions

e/o〈N〉e/o =

〈[
A†A +

(λ+ κ)2

4

] 1
2
〉

e/o

− λ+ κ

2
, (28)

e/o〈N2〉e/o = e/o〈A†A〉e/o − (λ+ κ)e/o〈N〉e/o. (29)
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Figure 4. Number squeezing No
s for odd PSSVS for generalized cases f (n) =√

n + κ+ λ in (a) and (b) for λ = κ = 1.5, and for harmonic oscillator cases f (n) = 1
in (c) and (d).

It is straightforward to calculate the expressions in (28) and (29) by using (25) and (27), and the
results are shown in figures 3 and 4 for even and odd PSSVS, respectively. In figure 3(a) and
(c), we plot the variation of Ne

s with respect to r as a function m for generalized and harmonic
oscillator PSSVS, respectively. Figure 3(a) demonstrates negative values of Ne

s , whereas no
negative region is visible in figure 3(c), which indicates that the photon distribution for gen-
eralized PSSVS is squeezed. A similar thing happens in figures 3(b) and (d) also, where we
plot the variation of Ne

s with respect to m. Overall, we observe that the photon number dis-
tribution is always squeezed in generalized even PSSVS (provided that we choose the r and
m values properly), and corresponding states are nonclassical, but the PSSVS for correspond-
ing to harmonic oscillator are not nonclassical. In case of odd PSSVS, we obtain even better
results, which we show in figure 4. Here, we do not see any positive value of No

s for generalized
PSSVS, whereas, the No

s for harmonic oscillator PSSVS are always positive.

4.3. Negativity of the Wigner distribution function

In order to obtain the Wigner distribution function in our case, we shall incorporate the
expressions of generalized PSSVS |ζ, f , m〉e/o from (9) and (10) in its usual form [21, 45]

W(z)e/o = e2|z|2
∫

d2β

π2
〈−β|ζ, f , m〉e/o e/o〈ζ, f , m|β〉2e2(β∗z−βz∗), (30)

where z, β are the eigenvalues of the Glauber coherent states. As we stated earlier that our
aim is to quantify the nonclassicality of the generalized PSSVS with respect to the Glauber

11
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Figure 5. Wigner distribution function for generalized PSSVS (a) m = 14 (b) m = 1 for
the even case, and those for the odd case are in (c) m = 10 (d) m = 1. In all the plots we
have taken r = 4, θ = 0,λ = κ = 1.5.

coherent states, therefore, we must take the inner products between the generalized PSSVS
|ζ, f , m〉e/oand the Glauber coherent states |β〉 in (30). While we utilize the exact form of the
even and odd PSSVS from (9) and (10) in (30) and introduce a change of variable γ = 2z, we
obtain

W(γ)e/o = e|γ|
2/2

∞∑
l1,l2=0

Ce/o
l1,l2

F e/o
l1,l2

(γ), (31)

with

Ce
l1,l2

=
2(− tanh r/2)k1+k2ei(l1−l2)θ(2k1)!(2k2)!

πN e2

ξ, f ,mk1!k2!
√

(2l1)!(2l2)! f (2l1)! f (2l2)!
, (32)

Co
l1,l2

=
2N o−2

ξ, f ,m(− tanh r/2)k′1+k′2ei(l1−l2)θ(2k′1)!(2k′2)!

πk′1!k
′
2!
√

(2l1 + 1)!(2l2 + 1)! f (2l1 + 1)! f (2l2 + 1)!
, (33)

F e
l1,l2

(γ) =
(−1)2(l1+l2)

√
(2l1)!(2l2)!

∂2(l1+l2)

∂γ2l1∂γ∗2l2
e−|γ|2 . (34)

Here, we have used the identity
∫

d2β
π

e−|β|2eγβ
∗−γ∗β = e−|γ|2 and parameterized k1 = m + l1,

k2 = m + l2, k′1 = k1 + 1, k′2 = k2 + 1. In order to write (34) in a more compact form, we shall
utilize the fact that the derivative of any analytic function f (z, z∗) with respect to z is indepen-
dent of z∗ and vice-versa, as well as employ the Rodrigues formula for the associated Laguerre
polynomials to obtain

F e
l1,l2

(γ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
(2l1)!
(2l2)!

e−4|z|2(2z)2(l2−l1)L2(l2−l1)
2l1

(4|z|2), l2 � l1√
(2l2)!
(2l1)!

e−4|z|2(2z∗)2(l1−l2)L2(l1−l2)
2l2

(4|z|2), l2 � l1,
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where we have restored the original variable by identifying z = γ/2. The function Fo
l1,l2

(γ)
corresponding to the odd case is obtained by replacing all 2l1 and 2l2 in both (34) and (35) by
2l1 + 1 and 2l2 + 1, respectively. The behavior of the Wigner function for both the even and
odd generalized PSSVS are shown in figure 5. In both of the cases, we find that the negativity in
Wigner function becomes stronger while we subtract more photons from the squeezed vacuum
states. For instance, in figure 5(a) we have taken m = 14 which implies that we have subtracted
28 photons, whereas in figure 5(b) m = 1, that means only 2 photons are subtracted, and it is
clear that the nonclassicality in the former case is higher than the latter. A similar type of obser-
vation can also be made for the odd cases in figures 5(c) and (d). In these cases, although we do
not notice an increase of negativity of the main peak, but we see more negative peaks around
the principal peak when higher number of photons are subtracted. We have no quantitative
analysis in our hand though, with which we can claim that the odd PSSVS have a stronger
nonclassicality with more number of photons being subtracted, however, intuitively it is more
likely. Nevertheless, it is always true that the PSSVS are more nonclassical than the squeezed
vacuum states, which is true in both the usual and generalized cases. The notion of higher
degree of nonclassicality for the generalized PSSVS than those of the harmonic oscillator also
sustains in this method also, which we do not present here.

5. Concluding remarks

We have proposed a method for the generalization of the PSSVS along with an example of
the trigonometric Pöschl–Teller potential on which our general framework has been applied.
We explore three different methods; such as, quadrature squeezing, number squeezing and
negativity of the Wigner function to show the nonclassical properties of the PSSVS for the
Pöschl–Teller model. A part of the discussion consists of the generalization of the above
three schemes which become suitable for the analysis of nonclassicality of the generalized
PSSVS. We find that the degree of nonclassicality can be enhanced by subtracting more pho-
tons from the generalized squeezed vacuum states. Therefore, utilization of the generalized
PSSVS may be more advantageous over the squeezed vacuum states. We also compare our
results with those emerging from the harmonic oscillator limits, and we observe that gener-
alized PSSVS often demonstrate more nonclassicality compared to the harmonic oscillator
cases. Thus, the generalized PSSVS provide a twofold enhancement of the nonclassicality
with respect to the harmonic oscillator squeezed vacuum states and we believe that such states
will bring fascinating outcomes for the study of quantum information.

So far, all results are theoretical, however, it is interesting to notice that the states can be
constructed analytically and most of the analysis of nonclassicality can also be carried out
analytically. A proper understanding of the states in the laboratory can be achieved only after
the realization of some basic nonlinear quantum optical states in real life, which is currently
under intense investigation. For the time being we believe that a lot of theoretical research are
yet to be performed for a deeper understanding of the framework. As an immediate follow
up, it would be worth studying the given protocol for some other general models and verify
whether our results hold in those cases also, which may effectively shed some light on the
given direction.
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