PHYS 622
Problem set \# 9 (due April 15)
Each problem is 10 points.
Sakurai and Napolitano problems: 6.1
A1 Using the first-order Born approximation, calculate the scattering amplitude $f(\theta, \phi)$ and the total scattering cross-section $\sigma_{t o t}$ for the Coulumb potential $V(r)=Z e^{2} / r$. Discuss the behavior in the limit of slow and fast particles.

A2 Repeat problem A1 for the Yukawa potential $V(r)=\frac{\alpha}{r} e^{-r / R}$.
A3 Working in Born's approximation, express the scattering amplitude for two identical scatterers, separated by the distance a :
$V(\vec{r})=V_{0}(r)+V_{0}(|\vec{r}+\vec{a}|)$
using the known scattering amplitude $f_{0}(\theta)$ for a single centrally-symmetric scatterer $V_{0}(r)$. Using this expression, discuss the connection between the differential scattering cross-sections of fast electrons on an atom and diatomic molecule, consisting of the two identical atoms. For a more realistic result, the molecular cross-section must be averaged with respect to different orientations of the molecule (i.e. for different directions of \vec{a}). Find the ratio between the differential cross-sections for a diatomic molecule and a single atom for two limiting cases:
(a) $k a \ll 1$ (without posing limitations for $k R$, where R is the potential acting range).
(b) $k R \approx 1$ and $a \gg R$ (i.e. the distance between the scaterrers is much larger than the potential range of each of them).

Q1 Consider a one-dimentional potential with a step function component and an attractive delta function component just at the edge:
$V(x)=V_{0} \Theta(x)-\frac{\hbar^{2} g}{2 m} \delta(x)$.
(a) Compute the reflection coefficient for particles with mass m incident from the left with energy $E>V_{0}$.
(b) Consider the limit of highly energetic particles $E \rightarrow \infty$. Will it be possible to "detect" the presence of the δ potential component by analyzing the dependence of the reflection coefficient on the particle energy E? Explain your answer.

