Physics 622

Problem set 6 (due March 25)
Sakurai and Napolitano problems (each problem is 10 points):
4.5,4.12

A1. Parity non-conservation (PNC) in hydrogen.

Show that the weak-interaction Hamiltonian (see problem 4.5) does not violates the time-reversal invariance.

A2. Parity measurements: A quantum system has only two energy eigestates, $|1\rangle,|2\rangle$, corresponding to the energy eigenvalues E_{1}, E_{2}. Apart from the energy, the system is also characterized by a physical observable whose operator $\hat{\pi}$ acts on the energy eigenstates as follows:

$$
\hat{\pi}|1\rangle=|2\rangle ; \hat{\pi}|2\rangle=|1\rangle
$$

The operator $\hat{\pi}$ can be regarded as a parity operator.
(a) Assuming that the system is initially in a positive-parity eigenstate, find the state of the system at any time.
(b) At a particular time T a parity measurement is made on the system. What is the probability of finding the system with positive parity?
(c) Quantum Zeno effect: Imagine that instead of a single measurement at time T you make a series of N parity measurements at the times $\Delta t, 2 \Delta t, \ldots N \Delta t=T$. Assuming that N is very large and $\Delta t \ll\left(E_{1}-E_{2}\right) / \hbar$, what is the probability of finding the system with positive parity at time T ? Compare this probability with the probability to find the system in the positive parity state with a single measurement at $t=T$. The "freezing" of the system in the initial state for a repeated series of measurements has been called the quantum Zeno effect.

A3. Permanent electric dipole moment (EDM).

Let's assume that an electron has an intrinsic dipole moment \vec{d}_{a}. In this case its interaction with an external electric field $\overrightarrow{\mathcal{E}}$ will be described by the Hamiltonian $\widehat{H}_{e d m}=-\vec{d}_{a} \cdot \overrightarrow{\mathcal{E}}$. Show that the existence of such a dipole moment would violate both parity and time-reversal invariance. (Hint: what vectors are available for \vec{d}_{a} to point along?)

Q1. Triangular potential well A particle of mass m, moving in one dimension, is localized inside a symmetric triangular potential well $V(x)=V_{0} \cdot|x|$. Consider a trial wave function $\psi(x) \propto e^{-\alpha|x|}$ and estimate the ground-state energy by minimizing the expectation value of the total energy of the particle.

