Physics 622

Problem set 5 (due March 4)
Sakurai and Napolitano problems (each problem is 10 points):
5.23, 5.32

A1 In a parallel universe there is no such thing as a spin of a particle, so the electron magnetic moment is proportional only to its orbital momentum. In that universe a hydrogen atom in state $n=2$ is placed simultaneously in parallel electric and magnetic fields, $\vec{E}=E_{0} \vec{e}_{z}$ and $\vec{B}=B_{0} \vec{e}_{z}$. Treating electron interaction with both fields as comparable small perturbations, calculate the resulting energy spectrum and new wavefunctions. The original $n=2$ state is four-fold degenerate. Does the interaction with the fields lift the degeneracy lifted by? At what values of E_{0} and B_{0} some degeneracy remains?

A2 A particle with mass m is in the ground state of the infinite one-dimensional potential well of width $2 L$ with walls positioned at $x= \pm L$. At time $t=0$ a perturbation is turned on:

$$
V(x, t)=\left\{\begin{array}{c}
V_{0} e^{-t / \tau} ; x \in[-a, a] \\
0 \quad \text { otherwise }
\end{array}\right.
$$

where $a \ll L$.
Calculate (up to the first non-vanishing term) the probabilities of finding the particle in various excited states $n>1$ after a very short time $t \ll \tau$ and after a very long time $t \gg$. Discuss the results.

A3 A neutron (spin $1 / 2$, magnetic moment μ_{n}) moves along y-axis in the constant and uniform magnetic field $B_{0} \vec{e}_{z}$. Its spin is oriented in positive zdirection. At $t=0$ the neutron enters the region when an additional uniform magnetic field $B_{1} \vec{e}_{x}$. What is the probability of the spin flip (i.e. finding the spin in the negative z direction) after the particle leaves the region of nonzero B_{1} at $t=t_{0}$?

