A1 Consider an attractive delta-shell potential $V(r) = -\frac{\hbar^2 \lambda}{2\mu} \delta(r-R)$. Calculate the phase shift $\delta_{\ell}(k)$, where ℓ is the angular momentum quantum number.

A2 Find the s-wave phase shift δ_0 and the scattering amplitude a_S for the "spherical well" potential $V(r) = -V_0$ for r < R, and V = 0 for r > R. At which conditions the scattering length becomes infinite, and what is their physical significance?

A3 Same as A2, but for the attractive delta-shell potential. You can (and should) use the results in A1.

A4 Consider the scattering of a particle by a distribution of scattering centers. Each scatterer is located at a point $\vec{r_i}$ and scatters with a given potential $V_0(|\vec{r} - \vec{r_i}|)$. Write down the scattering amplitude in the Born approximation. Consider the case of cube of side L with the scatterers placed at its eight vertices, and an infinite cubic lattice of a lattice spacing L.

Q1 The lowest excited states of the He atom have electron configuration $(1s)^1(2s)^1$. These include a spin singlet and a spin triplet. Which one (singlet or triplet) has the lower energy? Explain. Using single-electron wave functions $\psi_{1s}(\mathbf{r})$ and $\psi_{2s}(\mathbf{r})$, write down the expression for the energy difference. (You do not have to write down the actual forms of $\psi_{1s}(\mathbf{r})$ and $\psi_{2s}(\mathbf{r})$, which are of course similar to hydrogen wave functions but with Z = 2).