PHYS 622

Problem set # 1 (due January 29) Each problem is 10 points.

Q1 Consider an electron bound in a hydrogen atom under the influence of a homogeneous magnetic field $\vec{\mathbf{B}} = \hat{\mathbf{z}}B$. Ignore electron spin. The Hamiltonian of the system is: $\hat{H} = \hat{H}_0 - \omega \hat{L}_z$,

where $\omega = |e|B/2\mu c$. The eigenstates $|n \ell m\rangle$ and eigenvalues $E_n^{(0)}$ of the unerturbed hydrogen Hamiltonian \hat{H}_0 are to be considered known. Assume that initially (at t = 0) the sustem is in the state: $|\psi(0)\rangle = (|21 - 1\rangle - |211\rangle)/\sqrt{2}$.

For each of the following state, calculate the probability of finding the system, at some later time t > 0, in that state: $|2p_x\rangle = (|21 - 1\rangle - |211\rangle)/\sqrt{2};$

 $|2p_y\rangle = (|21 - 1\rangle + |211\rangle)/\sqrt{2};$

 $|2p_z\rangle = |2\,1\,0\rangle.$

When does each probability become equal to 1?

 $\mathbf{Q2}$ For a spin-1/2 particle the most general form of the spin wave function is:

 $|\psi\rangle = \left(\begin{array}{c} \cos\theta\\ e^{i\phi}sin\theta \end{array}\right),$

where $0 \le \theta \le \pi/2$ and $0 \le \phi < 2\pi$. Find the direction in space $\hat{\mathbf{n}}$, such that this state corresponds to the $+\hbar/2$ eigenvalue of the spin operator projection on this direction $\hat{\mathbf{n}} \cdot \vec{\mathbf{S}}$. Use your solution to find the eigenvectors for the x and y components of the spin operators \hat{S}_x and \hat{S}_y .

Q3 Consider an spinless particle of mass μ and charge q under the simultaneous influence of a uniform magnetic field and electric fields. The interaction Hamiltonian of the two terms are: $\hat{H}_M = -\frac{q}{2\mu c}\vec{B}\cdot\vec{L}; \hat{H}_E = -q\vec{E}\cdot\vec{r}.$

 $\begin{aligned} |\langle \ell \, m | \hat{H}_M + \hat{H}_E | \ell' \, m' \rangle|^2 &= |\langle \ell \, m | \hat{H}_M | \ell' \, m' \rangle|^2 + |\langle \ell \, m | \hat{H}_E | \ell' \, m' \rangle|^2, \\ \text{and that, always, one of the matrix elements } \langle \ell \, m | \hat{H}_M | \ell' \, m' \rangle \text{ or } \langle \ell \, m | \hat{H}_E | \ell' \, m' \rangle \text{ vanishes.} \end{aligned}$

Q4 Consider a pair of particles with opposite electric charges that have a magentic-dipole-moment interaction $\hat{H}_I = \alpha(\vec{\mu}_1 \cdot \vec{\mu}_2) = -\frac{e^2 g_1 g_2}{2m_1 m_2} \alpha \left(\vec{\mathbf{S}}^{(1)} \cdot \vec{\mathbf{S}}^{(2)} \right).$

The system is subject to an external uniform magnetic field $\vec{\mathbf{B}}$, which introduces the interaction: $-\vec{\mathbf{B}} \cdot (\vec{\mu}_1 + \vec{\mu}_2) = -\frac{e}{2m_1m_2}\vec{\mathbf{B}} \cdot \left(m_2g_1\vec{\mathbf{S}}^{(1)} - m_1g_2\vec{\mathbf{S}}^{(2)}\right).$

Determine the energy eigenvalues and eigenstates (in the basis of the spin eigenstates $|\uparrow\rangle^{(1)}|\uparrow\rangle^{(2)} \dots |\downarrow\rangle^{(1)}|\downarrow\rangle^{(2)}$). Express the results in terms of the parameters $a = (e^2 g_1 g_2 \alpha)/(4m_1 m_2)$ and $b_i = eBg_i/4m_i$.

Q5 Consider the state $|j_1 j_2; j m\rangle$, which is a common eigenstate of the angular momentum operators \vec{J}_1^2 , \vec{J}_2^2 and \vec{J}_2^2 , where $\vec{J} = \vec{J}_1 + \vec{J}_2$. Show that this state is also an eigenstate of the inner product operator $\vec{J}_1 \cdot \vec{J}_2$ and find its eigenvalues. Do the same for the operators $\vec{J}_1 \cdot \vec{J}$ and $\vec{J}_2 \cdot \vec{J}$.