PHYS 622
Problem set \# 1 (due January 29)
Each problem is 10 points.
Q1 Consider an electron bound in a hydrogen atom under the influence of a homogeneous magnetic field $\overrightarrow{\mathbf{B}}=\hat{\mathbf{z}} B$. Ignore electron spin. The Hamiltonian of the system is:
$\hat{H}=\hat{H}_{0}-\omega \hat{L}_{z}$,
where $\omega=|e| B / 2 \mu c$. The eigenstates $|n \ell m\rangle$ and eigenvalues $E_{n}^{(0)}$ of the unerturbed hydrogen Hamiltonian \hat{H}_{0} are to be considered known. Assume that initially (at $t=0$) the sustem is in the state:
$|\psi(0)\rangle=(|21-1\rangle-|211\rangle) / \sqrt{2}$.
For each of the following state, calculate the probability of finding the system, at some later time $t>0$, in that state:
$\left|2 p_{x}\right\rangle=(|21-1\rangle-|211\rangle) / \sqrt{2} ;$
$\left|2 p_{y}\right\rangle=(|21-1\rangle+|211\rangle) / \sqrt{2} ;$
$\left|2 p_{z}\right\rangle=|210\rangle$.
When does each probability become equal to 1 ?
Q2 For a spin- $1 / 2$ particle the most general form of the spin wave function is:
$|\psi\rangle=\binom{\cos \theta}{e^{i \phi} \sin \theta}$,
where $0 \leq \theta \leq \pi / 2$ and $0 \leq \phi<2 \pi$. Find the direction in space $\hat{\mathbf{n}}$, such that this state corresponds to the $+\hbar / 2$ eigenvalue of the spin operator projection on this direction $\hat{\mathbf{n}} \cdot \overrightarrow{\mathbf{S}}$. Use your solution to find the eigenvectors for the x and y components of the spin operators \hat{S}_{x} and \hat{S}_{y}.

Q3 Consider an spinless particle of mass μ and charge q under the simultaneous influence of a uniform magnetic field and electric fields. The interaction Hamiltonian of the the two terms are:
$\hat{H}_{M}=-\frac{q}{2 \mu c} \vec{B} \cdot \vec{L} ; \hat{H}_{E}=-q \vec{E} \cdot \vec{r}$.
Show that
$\left.\left.\left.\left|\langle\ell m| \hat{H}_{M}+\hat{H}_{E}\right| \ell^{\prime} m^{\prime}\right\rangle\left.\right|^{2}=\left|\langle\ell m| \hat{H}_{M}\right| \ell^{\prime} m^{\prime}\right\rangle\left.\right|^{2}+\left|\langle\ell m| \hat{H}_{E}\right| \ell^{\prime} m^{\prime}\right\rangle\left.\right|^{2}$,
and that, always, one of the matrix elements $\langle\ell m| \hat{H}_{M}\left|\ell^{\prime} m^{\prime}\right\rangle$ or $\langle\ell m| \hat{H}_{E}\left|\ell^{\prime} m^{\prime}\right\rangle$ vanishes.
Q4 Consider a pair of particles with opposite electric charges that have a magentic-dipole-moment interaction
$\hat{H}_{I}=\alpha\left(\vec{\mu}_{1} \cdot \vec{\mu}_{2}\right)=-\frac{e^{2} g_{1} g_{2}}{2 m_{1} m_{2}} \alpha\left(\overrightarrow{\mathbf{S}}^{(1)} \cdot \overrightarrow{\mathbf{S}}^{(2)}\right)$.
The system is subject to an external uniform magnetic field $\overrightarrow{\mathbf{B}}$, which introduces the interaction:
$-\overrightarrow{\mathbf{B}} \cdot\left(\vec{\mu}_{1}+\vec{\mu}_{2}\right)=-\frac{e}{2 m_{1} m_{2}} \overrightarrow{\mathbf{B}} \cdot\left(m_{2} g_{1} \overrightarrow{\mathbf{S}}^{(1)}-m_{1} g_{2} \overrightarrow{\mathbf{S}}^{(2)}\right)$.
Determine the energy eigenvalues and eigenstates (in the basis of the spin eigenstates $|\uparrow\rangle^{(1)}|\uparrow\rangle^{(2)} \ldots|\downarrow\rangle^{(1)}|\downarrow\rangle^{(2)}$). Express the results in terms of the parameters $a=\left(e^{2} g_{1} g_{2} \alpha\right) /\left(4 m_{1} m_{2}\right)$ and $b_{i}=e B g_{i} / 4 m_{i}$.

Q5 Consider the state $\left|j_{1} j_{2} ; j m\right\rangle$, which is a common eigenstate of the angular momentum operators $\overrightarrow{\mathbf{J}}_{1}^{2}, \overrightarrow{\mathbf{J}}_{2}^{2}$ and $\overrightarrow{\mathbf{J}}^{2}$, where $\overrightarrow{\mathbf{J}}=\overrightarrow{\mathbf{J}}_{1}+\overrightarrow{\mathbf{J}}_{2}$. Show that this state is also an eigenstate of the inner product operator $\overrightarrow{\mathbf{J}}_{1} \cdot \overrightarrow{\mathbf{J}}_{2}$ and find its eigenvalues. Do the same for the operators $\overrightarrow{\mathbf{J}}_{1} \cdot \overrightarrow{\mathbf{J}}$ and $\overrightarrow{\mathbf{J}}_{2} \cdot \overrightarrow{\mathbf{J}}$.

