Physics 611, Fall 2014

Problem set #3 (due October 27)

1. A He-Ne laser with wavelength $\lambda=633\text{nm}$ nominally $L=1\text{m}$ long is to be designed with a hemispherical cavity, i.e. one flat mirror and one curved mirror with $R=1\text{m}$. A micrometer screw is to be used to vary the exact cavity length over a small range, so that the cavity length will be $L=R-\Delta L$, where $\Delta L\ll L$. In this way, the spot size w_2 at the curved-mirror end can be varied to fill the 5mm radius of an aperture placed there.
 a. Write down the simple expression for w_2 as a function of ΔL.
 b. Over what range of ΔL must the micrometer screw move the curved mirror if w_2 is to vary from 5mm to all larger values?
 c. When $w_2 = 5\text{mm}$, what is the value of the beam size w_1 at the flat mirror end of the laser?

2. If we consider a higher-order (n,m) Hermit-Gaussian mode in a cavity, consisting of two spherical mirrors with radii R_1 and R_2 and separated by the distance L, the expression for its Guoy phase is $\varphi(z) = (n + m + 1)\tan^{-1}\left(\frac{z}{z_R}\right)$, where z_R is the Rayleigh range, l is axial mode index, and n and m are the transverse mode indices. Using this expression, show that the corresponding frequencies for axial and transverse modes are $f_{lmn} = c/p\left(l + \frac{(n+m+1)}{\pi}\cos^{-1}\sqrt{g_1g_2}\right)$, where p is the longitudinal optical path in the cavity, and $g_i=1-L/R_i$.

3. For the same cavity as in Problem 1 (a hemispherical geometry, $L=R-\Delta L$, where $\Delta L\ll L,R$), assume that the laser is allowed to oscillate in several axial and transverse modes, and that the beat frequency f_{beat} is the lowest intermode beat frequency that is observed in the laser output. Verify that $w_2^2 \cdot f_{\text{beat}} = c\lambda/\pi^2$, independent of L or R, as ΔL is varied with $\Delta L\ll L$.

4. A collimated Gaussian beam of a fixed spot size w is to be focused to the absolute minimum possible spot size (not necessarily a beam waist) of a work piece, using a single lens located a fixed distance L from the work piece. What should be the exact focal length f of this lens, and what will be the exact spot size of the focused spot?

5. Jackson 8.2
6. Jackson 8.3
7. Jackson 8.6
8. Jackson 8.19