Physics 611, Fall 2014

Problem set #2 (due September 30)

1. Jackson 7.6
2. Jackson 7.8
3. A linearly polarized monochromatic plane wave falls normally from vacuum to a semi-infinite slab of transparent material of refractive index n_2. A uniform layer of thickness d made of another transparent material with refractive index n_1 is placed on the boundary. Find the resulting reflection coefficient R (i.e. the fraction of the incident intensity that is reflected back to vacuum), and determine at what conditions the reflection disappears (this is how the anti-reflection coatings work). The wavelength of the radiation in vacuum is λ_0.

4. Determine the complex vector amplitude of a plane electromagnetic field for each set of Stokes parameters given below. In each case please state if polarization is linear, circular or elliptical, and sketch how it looks like.
 a. $S_0=3, S_1=2, S_2=-2, S_3=1$
 b. $S_0=5, S_1=-3, S_2=0, S_3=4$
 c. $S_0=25, S_1=24, S_2=-7, S_3=0$
5. Jackson 7.22
6. Jackson 7.23