Physics 611, Fall 2014

Problem set #2 (due September 30)

- 1. Jackson 7.6
- 2. Jackson 7.8
- 3. A linearly polarized monochromatic plane wave falls normally from vacuum to a semi-infinite slab of transparent material of refractive index n₂. A uniform layer of thickness d made of

another transparent material with refractive index n_1 is placed on the boundary. Find the resulting reflection coefficient R (i.e. the fraction of the incident intensity that is reflected back to vacuum), and determine at what conditions the reflection disappears (this is how the anti-reflection coatings work). The wavelength of the radiation in vacuum is λ_0 .

- 4. Determine the complex vector amplitude of a plane electromagnetic field for each set of Stokes parameters given below. In each case please state if polarization is linear, circular or elliptical, and sketch how it looks like.
 - a. S₀=3, S₁=2,S₂=-2, S₃=1
 - b. S₀=5, S₁=-3,S₂=0, S₃=4
 - c. $S_0=25$, $S_1=24$, $S_2=-7$, $S_3=0$
- 5. Jackson 7.22
- 6. Jackson 7.23