Physics 611, Fall 2014

Problem set #1 (due September 15)

- 1. Given the three-vector potential \vec{A} with $\nabla \cdot \vec{A} \neq 0$, find a gauge function] (\vec{r}) such that upon performing a gauge transformation to a new vector potential \vec{A}' , $\nabla \cdot \vec{A}' = 0$. Give a formula for] (\vec{r}) in terms of \vec{A} (\vec{r}).
- 2. Starting from the wave equation for the electric and magnetic fields Eqs (6.49) and (6.50), derive their solutions for a point charge, given by Eqs. (6.58) and (6.59)
- 3. A point charge q oscillates around the origin. Its position is given by $z(t)=z_0 \sin \tilde{S}t$. Find:
 - a. The charge density ... and the current density \vec{J} of the system.
 - b. The electric and magnetic fields along the *z* and *x* axes (assume that *d>>z*₀ where d is the distance from the observer to the origin);
 - c. The total power radiated as a function of time. Compare this last number to the

Lamoure formula that gives
$$P = \frac{2}{3} \frac{q^2}{4 f v_0} \frac{a^2}{c^3}$$

- 4. Jackson 6.8
- 5. Determine the force exhorted on a wall from which the plane electromagnetic wave is reflected (with reflection coefficient *R*). Assume that the angle of incidence is θ .
- 6. Jackson 6.15