Physics 611, Fall 2014

Problem set \#1 (due September 15)

1. Given the three-vector potential \vec{A} with $\nabla \cdot \vec{A} \neq 0$, find a gauge function $\Lambda(\vec{r})$ such that upon performing a gauge transformation to a new vector potential $\vec{A}^{\prime}, \nabla \cdot \vec{A}^{\prime}=0$. Give a formula for $\Lambda(\vec{r})$ in terms of $\vec{A}(\vec{r})$.
2. Starting from the wave equation for the electric and magnetic fields Eqs (6.49) and (6.50), derive their solutions for a point charge, given by Eqs. (6.58) and (6.59)
3. A point charge q oscillates around the origin. Its position is given by $z(t)=z_{o} \sin \omega t$. Find:
a. The charge density ρ and the current density \vec{J} of the system.
b. The electric and magnetic fields along the z and x axes (assume that $d \gg z_{0}$ where d is the distance from the observer to the origin);
c. The total power radiated as a function of time. Compare this last number to the

$$
\text { Lamoure formula that gives } P=\frac{2}{3} \frac{q^{2}}{4 \pi \varepsilon_{0}} \frac{a^{2}}{c^{3}}
$$

4. Jackson 6.8
5. Determine the force exhorted on a wall from which the plane electromagnetic wave is reflected (with reflection coefficient R). Assume that the angle of incidence is θ.
6. Jackson 6.15
