Homework \#5 (due on 03/06)
Boas Chapter 12
2.3; 4.3; 5.4; 5.6; 5.10; 5.12; 9.5; 9.9; 23.2; 23.9

Extra-credit problem - Induced charge density expansion

This problem deals with the charge density $\sigma(\theta)$ induced on a metallic grounded sphere due to an external point change q. Consider a sphere of radius R with its center at the

The formula for a surface charge density induced on the spherical surface is given by
$\sigma(\theta)=-\frac{q t}{4 \pi R^{2}} \frac{1-t^{2}}{\left(1-2 t x+t^{2}\right)^{3 / 2}}$
Where $t=R / z, x=\cos \theta$ and θ is the angle between z-axis and a position vector of a point lying on a sphere.
(a) Show that $\frac{1-t^{2}}{\left(1-2 t x+t^{2}\right)^{3 / 2}}=\Phi(x, t)+2 t \frac{\partial \Phi(x, t)}{\partial t}$ for the generation function $\Phi(x, t)=\left(1-2 t x+t^{2}\right)^{-1 / 2}$.
(b) Using the result from (a), expand the charge density $\sigma(\theta)$ in terms of Legendre polynomials.

