Homework \#4 (due on 02/15)

Boas Chapter 7 (Fourier transforms)
12.3; 12.11; 12.21; 13.20;

Boas Chapter 8 (Dirac δ-function)
11.15; 11.21;

Boas Chapter 11 (Special functions)
3.17; 5.5; 13.5; 13.17;

Extra-credit problem - Frequency spectrum of decaying oscillations
Many naturally-occurring oscillations start from some instantaneous perturbation, and then decay with time. Mathematically, they are described as
$f(t)=\left\{\begin{array}{cc}0 & t<0 \\ A e^{-\gamma t} \cos \omega_{0} t & t \geq 0\end{array}\right.$
Find Fourier transform of this function $\mathrm{F}(\omega)$. Then consider a high-frequency case such that $\omega, \omega_{0} \gg 1, \gamma$. The resulting line-shape is called Lorentzian, and appears very often in, for example, optical and microwave spectroscopy.
Sketch the resulting $\mathrm{F}(\omega)$. Based on this sketch, what is the physical meaning of parameters ω_{0} and γ ?

