Electromagnetically Induced Transparency (EIT)

Bright and dark states:

$$\left|B\right\rangle = \frac{E_{P}\left|b\right\rangle + E_{C}\left|c\right\rangle}{\sqrt{E_{P}^{2} + E_{C}^{2}}}$$

$$\left| \mathbf{D} \right\rangle = \frac{\mathbf{E}_{\mathrm{C}} \left| \mathbf{b} \right\rangle - \mathbf{E}_{\mathrm{P}} \left| \mathbf{c} \right\rangle}{\sqrt{\mathbf{E}_{\mathrm{P}}^{2} + \mathbf{E}_{\mathrm{C}}^{2}}}$$

Electromagnetically Induced Transparency (EIT)

Width of EIT peak is determined by **control field intensity**, but limited by **spin coherence lifetime**

Slow light via Electromagnetically Induced Transparency (EIT)

 $\frac{E_{C}^{2}}{\gamma}\frac{1}{\sqrt{N\lambda^{2}L}}$

 $\gamma_{\text{EIT}} \propto$

 $\omega \frac{dn}{dm} >> 1$

dω

Light propagation direction

Group velocity

$$v_g = \frac{d\omega(k)}{dk} = \frac{1}{n + \omega \frac{dn}{d\omega}}$$

Light propagation direction

Light propagation direction

Eugeniy E. Mikhailov, Vladimir A. Sautenkov, Irina Novikova, and George R. Welch Phys. Rev. A 69, 063808 (2004)

Slow light in EIT

Coupling of a probe pulse and a spin wave

Dark state:

Light-atoms interaction: dark-state polariton

Quantum memory for photons

Ideal memory operation

How long does the dark state live?

Cold atoms

No Doppler broadening, but there may be difficulties due to

- uncompensated magnetic fields
- gravity
- insufficient number of atoms
- collisions between atoms

These are technical problems – if all are fixed, the ground state coherence was shown to live up to several seconds!

How long does the dark state live?

How long does the dark state live?

