PHYS 404/690 Quantum and Nonlinear Optics

Problem set # 3 (due January 20)

Each problem is 10 points. The problems marked with * are required for graduate students only, and are extra credit problems for undergraduates.

P1 Consider a three-level atom in the Λ configuration. The on-resonant interaction Hamiltonian in this case is

 $\hat{H}_{int} = -\frac{\hbar}{2} \left(\Omega_1 | 3 \rangle \langle 1 | + \Omega_2 | 3 \rangle \langle 2 | \right) + c.c.,$

where Ω_1 and Ω_2 are the Rabi frequencies associated with the optical fields driving $3 \to 1$ and $3 \to 2$ transitions, respectively.

Show that the eigenstates of the Hamiltonian are:

$$\begin{split} |\psi_{+}\rangle &= \frac{1}{\sqrt{2}} \left(|3\rangle + \frac{\Omega_{1}^{*}}{\Omega} |1\rangle + \frac{\Omega_{2}^{*}}{\Omega} |2\rangle \right); \\ |\psi_{0}\rangle &= \left(\frac{\Omega_{2}}{\Omega} |1\rangle - \frac{\Omega_{1}}{\Omega} |2\rangle \right); \\ |\psi_{-}\rangle &= \frac{1}{\sqrt{2}} \left(|3\rangle - \frac{\Omega_{1}^{*}}{\Omega} |1\rangle - \frac{\Omega_{2}^{*}}{\Omega} |2\rangle \right); \end{split}$$

with $\Omega = \sqrt{|\Omega_1|^2 + |\Omega_2|^2}$. Find the corresponding eigenvalues.

P2 Using the density matrix elements equations we wrote in class for a Λ system as an example, write down the similar equations for a V system, in which two optical fields with Rabi frequencies Ω_1 and Ω_2 connect two excited states $|1\rangle$ and $|2\rangle$ with the common ground state $|3\rangle$. Assume that the two excited states have same population and optical coherence decay rates into the ground state γ_p and γ_c , correspondingly. Also assume that there is no population exchange between the two excited states, but there is a non-zero collisional decoherence with the rate γ_{12} .

P3 Let's have a closer look at the optical pumping effect. We assume a single optical field with Rabi frequency Ω acting on a three-level atom, between the states $|2\rangle$ and $|3\rangle$. If there is a population exchange between the two ground states at the rate γ_0 , the non-zero elements of the density matrix evolve as:

$$\begin{aligned} \dot{\rho}_{11} &= \gamma \rho_{33} - \gamma_0 (\rho_{11} - \rho_{22}); \\ \dot{\rho}_{22} &= \gamma \rho_{33} + \gamma_0 (\rho_{11} - \rho_{22}) - i\Omega \rho_{23}/2 + i\Omega^* \rho_{32}/2; \\ \dot{\rho}_{32} &= -(\gamma - i\Delta) \rho_{32} + i\Omega (\rho_{22} - \rho_{33})/2; \end{aligned}$$

where γ is the population and decoherence decay rate of the state $|3\rangle$ into each of the ground states, and Δ is the optical detuning.

Calculate the steady-state populations of all three levels.

P4^{*} We can obtain insight into the physical origin of the differences between the two absorption resonances in a far-detuned three-level system by examining it in the dressed state picture that you have studied in HW2. Show the strong field Ω_2 "dresses" the two-level transition $2 \rightarrow 3$ bare three-level system, so that the eigenstates probed by Ω_1 contain a mixture of states $|2\rangle$ and $|3\rangle$:

$$\begin{split} |+\rangle &\simeq |3\rangle + \frac{\Omega_2^*}{2\Delta} |2\rangle; \\ |-\rangle &\simeq |2\rangle - \frac{\Omega_2}{2\Delta} |3\rangle; \end{split}$$

where we have only kept terms to lowest order in Ω_2/Δ because of the large detuning. Using this result, explain the expected probe absorption features.