PHYS 404/690 Quantum and Nonlinear Optics

Problem set \# 3 (due January 20)
Each problem is 10 points. The problems marked with $*$ are required for graduate students only, and are extra credit problems for undergraduates.

P1 Consider a three-level atom in the Λ configuration. The on-resonant interaction Hamiltonian in this case is
$\hat{H}_{\text {int }}=-\frac{\hbar}{2}\left(\Omega_{1}|3\rangle\langle 1|+\Omega_{2}|3\rangle\langle 2|\right)+c . c .$,
where Ω_{1} and Ω_{2} are the Rabi frequencies associated with the optical fields driving $3 \rightarrow 1$ and $3 \rightarrow 2$ transitions, respectively.

Show that the eigenstates of the Hamiltonian are:

$$
\begin{aligned}
& \left|\psi_{+}\right\rangle=\frac{1}{\sqrt{2}}\left(|3\rangle+\frac{\Omega_{1}^{*}}{\Omega}|1\rangle+\frac{\Omega_{2}^{*}}{\Omega}|2\rangle\right) \\
& \left|\psi_{0}\right\rangle=\left(\frac{\Omega_{2}}{\Omega}|1\rangle-\frac{\Omega_{1}}{\Omega}|2\rangle\right) \\
& \left|\psi_{-}\right\rangle=\frac{1}{\sqrt{2}}\left(|3\rangle-\frac{\Omega_{1}^{*}}{\Omega}|1\rangle-\frac{\Omega_{2}^{*}}{\Omega}|2\rangle\right)
\end{aligned}
$$

with $\Omega=\sqrt{\left|\Omega_{1}\right|^{2}+\left|\Omega_{2}\right|^{2}}$. Find the corresponding eigenvalues.
P2 Using the density matrix elements equations we wrote in class for a Λ system as an example, write down the similar equations for a V system, in which two optical fields with Rabi frequencies Ω_{1} and Ω_{2} connect two excited states $|1\rangle$ and $|2\rangle$ with the common ground state $|3\rangle$. Assume that the two excited states have same population and optical coherence decay rates into the ground state γ_{p} and γ_{c}, correspondingly. Also assume that there is no population exchange between the two excited states, but there is a non-zero collisional decoherence with the rate γ_{12}.

P3 Let's have a closer look at the optical pumping effect. We assume a single optical field with Rabi frequency Ω acting on a three-level atom, between the states $|2\rangle$ and $|3\rangle$. If there is a population exchange between the two ground states at the rate γ_{0}, the non-zero elements of the density matrix evolve as:

$$
\begin{aligned}
& \dot{\rho}_{11}=\gamma \rho_{33}-\gamma_{0}\left(\rho_{11}-\rho_{22}\right) \\
& \dot{\rho}_{22}=\gamma \rho_{33}+\gamma_{0}\left(\rho_{11}-\rho_{22}\right)-i \Omega \rho_{23} / 2+i \Omega^{*} \rho_{32} / 2 \\
& \dot{\rho}_{32}=-(\gamma-i \Delta) \rho_{32}+i \Omega\left(\rho_{22}-\rho_{33}\right) / 2
\end{aligned}
$$

where γ is the population and decoherence decay rate of the state $|3\rangle$ into each of the ground states, and Δ is the optical detuning.

Calculate the steady-state populations of all three levels.
$\mathbf{P} 4^{*}$ We can obtain insight into the physical origin of the differences between the two absorption resonances in a far-detuned three-level system by examining it in the dressed state picture that you have studied in HW2. Show the strong field Ω_{2} "dresses" the two-level transition $2 \rightarrow 3$ bare three-level system, so that the eigenstates probed by Ω_{1} contain a mixture of states $|2\rangle$ and $|3\rangle$:
where we have only kept terms to lowest order in Ω_{2} / Δ because of the large detuning. Using this result, explain the expected probe absorption features.

