PHYS 404/690 Quantum and Nonlinear Optics

Problem set \# 2 (due January 6)

Each problem is 10 points. The problems marked with $*$ are required for graduate students only, and are extra credit problems for undergraduates.

P1 Draw the level diagram for and white the expression for the interaction Hamiltonian to the three-level system with the equations of motion:
$\dot{c}_{1}=\frac{i}{2} \mathcal{R} c_{2}$
$\dot{c}_{2}=\frac{i}{2} \mathcal{R}\left(c_{1}+c_{3}\right)$
$\dot{c}_{3}=\frac{i}{2} \mathcal{R} c_{2}$
P2 In class we derived expression for Rabi oscillations assuming no decay of the atomic states. While usually it is impossible to properly include spontaneous emission is a wave-function description of the semi-classical lightatom interactions, in the case of the two-level atom the finite lifetime of the atomic levels can be described by adding phenomenological decay terms to the probability amplitude equations:

$$
\begin{align*}
\dot{c}_{e} & =-\frac{\gamma}{2} c_{e}-i \frac{\Omega}{2} c_{g} \tag{1}\\
\dot{c}_{g} & =-\frac{\gamma}{2} c_{g}-i \frac{\Omega}{2} c_{e}
\end{align*}
$$

where γ is the decay rate. For an atom initially in the state $|e\rangle$, show that the inversion (differences in populations between the excited and the ground states) is $P_{e}-P_{g}=e^{-\gamma t} \cos (\Omega t)$.

P3 Using explicit expressions for the wave functions for the hydrogen atom, explain which transitions are possible between $1 S$ state and various m-sublevels of $2 P$ states, in case of x, y and $\sigma_{ \pm}$polarized electromagnetic field. Assume that the light propagates along z axis, and it is also the quantization direction for the atoms.
$\mathbf{P} 4^{*}$ A useful alternative basis for the two-level system cosists of dressed states, which are the eigenvectors of the Hamiltonian $\hat{H}=\hat{H}_{0}+\hat{H}_{I}$. Specifically, show that the eigenvectors satisfy the eigenvalue equations
$\hat{H}\left[\begin{array}{l}u \\ v\end{array}\right]=\left[\begin{array}{cc}-\delta & \Omega_{0} \\ \Omega_{0} & \delta\end{array}\right]\left[\begin{array}{l}u \\ v\end{array}\right]=\lambda\left[\begin{array}{l}u \\ v\end{array}\right]$
are given by
$\left[\begin{array}{l}u_{2} \\ v_{2}\end{array}\right]=\frac{1}{\sqrt{(\Omega-\delta)^{2}+\Omega_{0}^{2}}}\left[\begin{array}{c}\Omega-\delta \\ \Omega_{0}\end{array}\right]=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$
for the eigenvalue $\lambda=\Omega$ and
$\left[\begin{array}{l}u_{1} \\ v_{1}\end{array}\right]=\left[\begin{array}{c}-\sin \theta \\ \cos \theta\end{array}\right]$
for $\lambda=-\Omega$ Here
for $\lambda=-\Omega$. Here Ω_{0} is the Rabi frequency of the transition, $\delta=\omega_{a b}-\omega$ is the difference between the frequencies of atomic transition and the electromagnetic field, and $\Omega=\sqrt{\left|\Omega_{0}\right|^{2}+\delta^{2}}$ is the generalized Rabi frequency.

