PHYS 404/690 Quantum and Nonlinear Optics

Problem set \# 1 (due January 30)
Each problem is 10 points. The problems marked with $*$ are required for graduate students only, and are extra credit problems for undergraduates.

P1 Starting from the wave equation:
$-\nabla^{2} \vec{E}+\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}=-\mu_{0} \frac{\partial^{2} \vec{P}}{\partial t^{2}}$
derive the following equations of motion for the slowly-varying amplitude E_{0} and phase ϕ, defined as $\vec{E}=$ $\vec{e}_{x} E_{0}(z, t) e^{i[k z-\omega t+\phi(z, t)]}:$
$\frac{\partial E_{0}}{\partial z}+\frac{1}{c} \frac{\partial E_{0}}{\partial t}=-\frac{k}{2 \epsilon_{0}} \operatorname{Im}\left(\mathcal{P}_{0}\right)$
$E_{0}\left(\frac{\partial \phi}{\partial z}+\frac{1}{c} \frac{\partial \phi}{\partial t}\right)=\frac{k}{2 \epsilon_{0}} \operatorname{Re}\left(\mathcal{P}_{0}\right)$

P2 Calculate the absorption length $\left(1 / \alpha_{0}\right)$ for a $1.06 \mu \mathrm{~m}$ Nd:YAG laser beam propagating through a resonant linear medium with 10^{16} dipoles $/ \mathrm{m}^{3}$.

P3 Calculate the magnitudes of the electric and magnetic fields for a 3 mW 628.3 nm laser focused down to a spot with a $2 \mu \mathrm{~m}$ radius. Assume constant intensity across the spot. How does this result scale with wavelength?

P4 In an optical cavity, the resonant wavelengths are determined by the constructive-interference condition that an integer number of wavelengths must occur in a round trip. The corresponding frequencies are determined by these wavelengths and the speed of light in the cavity. Given a cavity with a medium having anomalous dispersion, would it be possible to have more than one frequency resonant for a single wavelength? How?

P5* Calculate the first and second-order coherence functions for the field:
$E^{+}(\vec{r}, t)=\frac{E_{0}}{r} e^{-(\gamma+i \omega)(t-r / c)} \Theta(t-r / c)$,
where Θ is the Heaviside (step) function. This would be the field emitted by an atom located at $r=0$ and decaying spontaneously from time $t=0$, if such a field could be described totally classically.

