
Chapter 5

γ-ray Studies

In the first week you will measure total cross-sections for various materials and become
familiar with the apparatus. In the second week you will study Compton scattering.

5.1 Objectives of the Experiment:

• To appreciate the role of γ-rays in nuclear electromagnetic transitions.

• To become familiar with the experimental methods of γ-ray spectroscopy, starting
with the fundamental mechanisms which occur when a γ-ray enters a detector such
as a NaI(Tl) crystal (sodium iodide doped with thallium), and concluding with
an understanding of a Multi-Channel analyzer (MCA), which processes amplified
signals from the detector.

• To investigate quantitatively the passage of γ-rays through matter.

There are two dominant scattering processes for γ-rays of the energies we will use here.
These are Compton scattering in which the γ-ray scatters from an essentially free electron
and the photo-effect in which the γ-ray is absorbed by an atom which then ejects an
electron with all the available energy. These are discussed below.

5.2 Compton Scattering

Klein and Nishina[?] derived the following equation for Compton scattering. The Klein-
Nishina cross-section is:
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(5.1)

Here, Eγ is the incident photon’s energy, Eγ′ is the outgoing photon’s energy, and rc =
e2/mc2 is the classical radius of the electron of mass m. One can solve the relativistic
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kinematic equations for Eγ′ in terms of Eγ and θ, the scattering angle for the photon to
obtain:

Eγ′ =
Eγ

1 + ǫ(1 − cosθ) (5.2)

where ǫ = Eγ/mc2. Putting this into Eq.5.1 one obtains:
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(5.3)

Now one would use Feynman diagrams to calculate this cross-section. Klein and
Nishina did not, since they had not yet been invented. The lowest order Feynman
diagram for Compton scattering is shown in Fig. 5.1
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Figure 5.1: Feynman diagram for Compton Scattering. A photon, represented by awiggly
line interacts with an electron, this in turn radiates a photon. A more detailed discussion
will have to wait until graduate school.

5.2.1 Photoelectric Cross-section

InAlpha-, Beta- and Gamma-ray spectroscopy edited by K. Siegbahn [?] the dominant K-shell
cross-section is given as:

σpe = 1.367 × 10−22(αZ)5
1

ǫ
cm2/atom (5.4)

Note that α ≈ 1/137 is the “fine structure constant” and ǫ = Eγ/mc2 the ratio of the
incoming γ-ray’s energy to the rest mass energy of an electron. For aluminum σpe is only
about 1% of the Compton cross-section and therefore will be ignored in the Compton
scattering part of this lab. For lead with Z=82 the photo-effect cannot be ignored.
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Figure 5.2: Theoretical and experimental differential cross-sections. Taken from Heitler[?]

5.3 Equipment

The general layout is shown in Fig. 5.5.You will use a set of weakly radioactive sources:
22Na, 137Cs, and 60Co. See Fig. 5.4 for the energy levels.

Figure 5.3: A NaI(Tl) detector

5.4 Procedure: First Week

Signals Determine the amplitudes, rise-time and fall time of the signals directly from
the photo-multiplier tube.You may need a 50 ohm terminator at the input to the
oscilloscope. Why? .
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Figure 5.4: Nuclear states and their decay characteristics.

Figure 5.5: γ-rays from the source are scattered by the atoms in the plates.

Calibration Determine the photo-peak channel numbers for the two peaks of 60Co, and
22Na, and the single peak of Cs. Use the known energies from Fig. 5.4 and make a
plot of E versus channel number. Fit this to a straight line: E = a + b · n. Determine
the constants a and b and their errors. You will need this calibration for later use.

Compton Edges Determine the channel number for the Compton edges (see Fig. 5.3).
From these and your calibration determine the γ-ray energies of these edges. Com-
pare to the theoretical values.

Line Widths Determine the fullwidth athalfmaximum, fwhm, for eachpeak. Youcanuse

the region of interest feature to do this. Make a plot of fwhm vs.
√
E for all the peaks.

Assume the energy measured is proportional to some number N, and the fwhm is

proportional to
√

(N), both with the same proportionality constant. DetermineN for
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Figure 5.6: Pulse height distribution for a gamma-ray incident on a NaI(Tl) detector. Note
the Compton edge, and the width of the photo-peak.

one of the peaks which you identify. This
√

(N) behavior is characteristic of Poisson
statistics which is appropriate for counting numbers.

Absorption Cross-sections For 137Cs, 22Na and 60Co place varying thickness of plastic,
aluminum, copper, and lead between the sources and the detector. Does the position
of the photopeak change with absorber thickness? Plot the counts in the photopeaks
versus absorber thickness. From these determine the absorption cross-sections.

5.5 Measurements: Second Week

• Check the energy calibration

• Determine the number of counts for fixed live-time as a function of angle with the
aluminum cylinder in place. You might wish to take more time at the back angles.

• Repeat the previous with the target cylinder removed. Youmight want to try several
shielding configurations with both sets of measurements. Record the shielding
arrangement that you use.

• Determine the peak energy as a function of angle. Compare this to the expected
values for Ec from:

1

Ec
=
1

E
+
1

mc2
[1 − cosθ] (5.5)

, which can be obtained from energy and momentum conservation.

• Determine dσ(θ)
dΩ
. Plot this as a function of angle and plot the theoretical dσ(θ)

dΩ
. This

will take a fair amount of work. Describe and try to explain the discrepancies.
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5.6 Considerations

We are using the apparatus shown in Fig. 5.7. With some dimensions shown in Fig. 5.8.
We divide our considerations into:

Figure 5.7: The experimental apparatus.

• Beam Characteristics

• Target Considerations

• Detector Considerations

5.6.1 Beam

We start by determining the number of decays per second of 137Cs there are. The activity
N0s at a certain time in the past is given on the source. Note that a Curie is: 3.7 × 1010
decays per second. Presuming the half life is τ1/2, the current activity is:

Ns = N0s · (
1

2
)t/τ1/2 (5.6)

The number of γ-rays per second and steradian is then:

dNs
dω
=
Ns
4π

(5.7)

The beam is limited by the aperture shown in Fig. 5.8. Even here there are approxima-
tions. The beam is not completely and cleanly collimated since the γ-rays will penetrate
a little into the collimator and can then scatter back into the beam.
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Figure 5.8: The experimental apparatus showing dimensions.

5.6.2 Target

Here we consider the probability of scattering into some solid angle. If we break the beam
into small cones of solid angle dω , see Fig. 5.9, which intersect the target and have a path
of length l(~ω), then the number of scatterers is approximately ρl(~ω)R2dω, where ρ is the
volume density of scatterers and R is the distance from the source to the target center.
The fraction of the incident particles into dω that scatter into dΩ is then:

f =
dNs(~ω)

dω
dω ·

l(~ω)R2dωρ

R2dω

dσ

dΩ
. (5.8)

which, after integrating over the target (dω), is approximately:

dNd
dΩ
=
Ns
4πR2

0.86Dπ
(

D

2

)2 dσ

dΩ
(5.9)

where D is the diameter of the target rod and Nd is the number into the detector..
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Figure 5.9: The target geometry.

5.6.3 Detector

One needs to determine the solid angle, δΩ of the aperture of the detector, the total
probability of detection of a γ-ray of a particular energy (obtained from Fig. 5.10 ),
Ptot(E) and if one only counts the photo-peak, the fraction of the spectrum which is in the
photo-peak: fpp = Ppp/Ptot(obtained from Fig. 5.11). The detected counts are then:

Ndet =
dNd
dΩ

δΩPtot fpp (5.10)

5.6.4 Total Cross-section

Consider the situation depicted in Fig. 5.12. If the target is very thin we can assume that
most of the particles go through and are then detected. Let Ninc be the number incident
on the target and Ndet be the number detected. If the target is not present then we assume
Ndet = Ninc. If the target is very thin Ndet ≈ Ninc and the probability that a scattering has
occured is:

P =
Ninc −Ndet
Ninc

= 1 − Ndet
Ninc

(5.11)

The fraction, f , of this area of the target taken up by scatterers is:

f = Ntgts(cm
−2) · σ(cm−2) (5.12)

where Ntgts(cm
−2) is the number of scatterers per cm2, and σ is the area taken up by each

scatterer. Evidently:

P = f (5.13)
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Figure 5.10: Absorption in NaI

So:

1 − Ndet
Ninc

= Ntgts(cm
−2) · σ(cm2) (5.14)

σ(cm2) =
1 − Ndet

Ninc

Ntgts(cm−2)
(5.15)

Now suppose one has a detector which will detect any scattering that occurs, but not
particles which don’t scatter. then:

σ(cm2) =
Ndets

NincNtgts(cm−2)
(5.16)

5.7 Differential Cross-section

In general the scattering will be different to different angles. Consider Fig. 5.13.

We may define dσ
dΩ
δΩ to be a small area associated with each scatterer which leads to a

particle scattered into the detector. With this definition:

dσ

dΩ
=

Ndets
NincNtgts(cm−2)δΩ

(5.17)
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Figure 5.11: Peak to total ratios

5.7.1 The Thomson Cross-section

This cross-section corresponds to the case of a photon scattering from a charge. Usually
only scattering from electrons need be considered. A heuristic derivation of the radiated
power, Pr, from an accelerated chargewill first be given. Then the incoming photon power
will be associated with n~ω, where n is the number of incoming photons per second. The
outgoing power will be then n’~ω, with the same frequency which is the case for low
frequency photon scattering. The Thomson cross-section is:

σT = n
′/n = Pr/Pi (5.18)

Beam of Particles

Target

Detector

Figure 5.12: An incident beam of particles strikes a target and some scatter. If no scattering
occurs it is assumed that the particle will reach the detector and be detected.
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Beam of Particles

Target
Detector

θ

δΩ

Figure 5.13: An incident beam of particles strikes a target and some scatter into a detector
at an angle θ and φ subtending a solid angle dΩ.

5.7.2 Heuristic Derivation of Pr

The classical radiated power from an accelerated charge is derived in many Electricity
and Magnetism texts, e.g., Classical Electrodynamics by J. D. Jackson[?]. What follows is
not rigorous, but does yield the right result and can easily be used to re-derive the result.

One knows that the radiated power is proportional to the square of the electric field in
the radiation field. This electric field is certainly proportional to e, the charge in question.

One knows that a stationary charge does not radiate. Neither does a constantly
moving charge in vacuum. Thus we expect the radiation field to be proportional to a, the
acceleration of the charge.

Thus, the radiated power is:

Pr ∝ e2a2 (5.19)

But, power should have units of e2/(ls). Note that this is in Gaussian units where φ = e2/r,
a set of units it might be useful to learn about. If you want you could re-derive the results
here in SI units. In Eq. 5.19 the right hand side has units: e2l2/t4. Thus, to make the right
hand side have the right units one needs to divide by (l/s)3. The only thing around with
the units of l/t is the speed of light: c. So, now the right hand side is e2a2/c3. We are
almost finished deriving the power from an accelerated charge. One needs to note that
if the acceleration is along the z axis, one can only observe the motion along the x and y
directions, i.e., 2/3 of the three directions. Thus we are left with the final result:

Pr =
2

3
e2a2/c3 (5.20)

This is correct, in Gaussian units.

5.7.3 Cross-section

The incoming power is:
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Pi =
E2
i

4π
c = n~ω (5.21)

where Ei is the incoming photon’s electric field and ω is the photon’s angular frequency.
The acceleration, a = eEi/m where m is the mass of radiating charge. So, we can re-write
Eq. 5.20 as:

Pr =
2

3

e2E2
i
e2

m2c4
c =
2

3
(
e2

mc2
)24πPi (5.22)

So, finally we get:

σT =
8π

3
r2c (5.23)

where rc = e
2/mc2, the so-called classical radius of the electron. Approximately, rc =

2.8 · 10−13cm.

5.8 NaI Detector and Photo-multiplier Tube

ANaI(Tl) scintillatormounted on a photo-multiplier tube is shown in Fig. 5.14. Photons of
energy hνγ enter the scintillator crystal. Inside this crystal Compton scattering and photo-
electric processes occur. In Compton scattering some of the incident photon’s energy is
transferred to an electron and a lower energy photon. In a photo-electric essentially all
of the photon’s energy is transferred to an electron. A nucleus takes up the momentum
necessary for energy momentum conservation. The Compton scattered lower energy
photon may also scatter again further transferring energy to electrons.

The electrons discussed above travel through the NaI crystal exciting the Na and I
atoms. These atoms de-excite, emitting photons. These photons excite the Tl atoms, which
then de-excite with photons, some of which enter the photo-multiplier tube striking the
photo-cathode to produce electrons, for example,Nc. (The photo-cathode is very near the
entrance to the tube.) These electrons are accelerated by an applied electric field and strike
the first dynode, D1. The dynodes are electrodes held at ever increasing potential. Upon
striking the dynode, more than one electron is ejected, say n, are ejected. This acceleration
and ejection process is repeated for 10 or so dynodes. Thus the number of electrons which
finally reach the anode ( the last dynode ) is thenNa = Nc×n10. The charge: e ·Na produces
a voltage at the SIG output.

5.8.1 Classification of Radionuclear Decays

In 1896 Becquerel made the first observation of radioactivity. Investigations in the early
decades of this century soon led to a classifcation of radioactive materials as α, β, and γ
emitters. The process of spontaneous fission was first observed much later.
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Figure 5.14: Photo-multiplier tube assembly with NaI scintillator.

α emitters tend to be isotopes of transuranian nuclei (mass number A > 208). Unstable
in their nucleon configuration, they decay to a daughter nuclide of mass (A-4) plus
an alpha particle. The α “ray” (or particle) was soon identified as a fully ionized
helium nucleus which departs the scene of decay with about 5 to 10 MeV of kinetic
energy.

β emitters tend to be unstable nuclear isotopeswhich have a low tomediummass number
A. The beta particle was determined to be an electron (or positron): n→ p+ e−+νbar.

γ emitters span the full range of the nuclear chart. γ rays from these sources represent
the photons emitted in electromagnetic transitions as an excited nucleus makes a
transition from an upper to a lower energy level.

Check out the “Chart of the Nuclides” in room Millington 303 to identify α, β, and γ
emitters.
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