PHYS 314

Problem set \# 7 (due April 1)
Each problem is 10 points, unless stated otherwise.
Griffiths: 5.34, 5.35
Q1 Suppose that we have N identical bosons of mass m in a one dimensional box of length $L=N a(0<x<N a)$, with the Hamiltonian
$\hat{H}=\sum_{i=1}^{N} \hat{p}_{i}^{2} / 2 m+\lambda / 2 \sum_{i \neq j} \delta\left(x_{i}-x_{j}\right)$.
(a) Suppose $\lambda=0$. What is the ground state wave function? Call your answer $\Psi_{0}\left(x_{1}, \cdots x_{N}\right)$. What is the energy of this state $E_{0}(\lambda=0)$? How does it scales with the number of particles if $N \gg 1$?
(b) Now, let us suppose that $\lambda>0$, so that these bosons repel each other. Calculate the first-order correction to the ground-state energy $\Delta E_{0}(\lambda)$ and comment on your answer. Hint: note, that each individual interaction term only depends on two coordinates, and thus when integrating over N-dimensional wave function, we can immediately integrate over $N-2$ coordinates and get factors of unity.
(c) Now we throw out the bosons, and put N fermions with the same mass in the same box. What is the ground state $\tilde{\Psi}_{0}\left(x_{1}, \cdots x_{N}\right)$ for the fermionic system, if $\lambda=0$? Hint: it may be convenient to use Slater determinant to write this wave function.
(d) What is the energy of this state $\tilde{E}_{0}(\lambda=0)$? Calculate it in the limit of large particle number $N \gg 1$ and argue why it must be independent of λ.
Q2 Consider a 1D model of a crystal in which a periodic potential is shown in the figure.
Assume that a particle of mass m is moving in this potential with the total energy
 $E>U_{0}$. Using the conditions for the wave function continuity and the Block theorem $\phi(x)=e^{i k(a+b)} \psi(x-a-b)$, write four equations for boundary conditions at $x=0$ and $x=a$ that, if solved can provide the indirect relation between the lattice parameter k and the energy of the particle E.
For the brave at heart (and 4 points of extra credit): show that this relation is:

$$
\cos k(a+b)=\cos k_{1} a \cos k_{2} a-\frac{1}{2}\left(\frac{k_{1}}{k_{2}}+\frac{k_{2}}{k_{1}}\right) \sin k_{1} a \sin k_{2} b
$$

where $k_{1}=\sqrt{2 m E} / \hbar$ and $k_{1}=\sqrt{2 m\left(E-U_{0}\right)} / \hbar$.
Q3 An experimentalist has carefully prepared a particle of mass m in the first excited state of a one-dimensional harmonic oscillator of frequency ω, when she sneezes and knocks the center of the potential well a small distance A to one side. It takes her time T to notice this, after which she immediately puts the center back where it was. Find, to lowest order in A, the probabilities P_{0} and P_{2} that the oscillator will now be in its ground state and its second excited state after the ordeal.

