PHYS 314
Problem set \# 2 (due February 4)
Each problem is 10 points, unless stated otherwise.
Griffiths, Ch. 6: 6.29, 6.37(20 points)
The following integral may be handy for the problem 6.29:

$$
\int_{0}^{\alpha} x^{n} e^{-x} d x=n!\left(1-e^{-\alpha} \sum_{k=0}^{n} \frac{\alpha^{k}}{k!}\right)
$$

Q1 A particle with charge q and mass m is in ground energy state inside a one-dimensional infinite square well with width $2 a$, centeredat $x=0$. Find the first- and second-order corrections of the ground-level energy, if this particle is placed inside a uniform electric field E. (The answers may include a dimensionless summation, if necessary)

Q2 Consider a spinless particle of mass μ and charge q under the simultaneous influence of a uniform magnetic field and electric fields. The interaction Hamiltonian of the the two terms are:
$\hat{H}_{M}=-\frac{q}{2 \mu c} \vec{B} \cdot \vec{L} ; \hat{H}_{E}=-q \vec{E} \cdot \vec{r}$.
Show that
$\left.\left.\left.\left|\langle\ell m| \hat{H}_{M}+\hat{H}_{E}\right| \ell^{\prime} m^{\prime}\right\rangle\left.\right|^{2}=\left|\langle\ell m| \hat{H}_{M}\right| \ell^{\prime} m^{\prime}\right\rangle\left.\right|^{2}+\left|\langle\ell m| \hat{H}_{E}\right| \ell^{\prime} m^{\prime}\right\rangle\left.\right|^{2}$,
and that, always, one of the matrix elements $\langle\ell m| \hat{H}_{M}\left|\ell^{\prime} m^{\prime}\right\rangle$ or $\langle\ell m| \hat{H}_{E}\left|\ell^{\prime} m^{\prime}\right\rangle$ vanishes.
Helpful relationships: For the magnetic field calculations: $\hat{L}_{ \pm}=\hat{L}_{x} \pm i \hat{L}_{y},\langle\ell m| \hat{L}_{ \pm}\left|\ell^{\prime} m^{\prime}\right\rangle \propto \delta_{\ell \ell^{\prime}} \delta_{m m^{\prime} \pm 1},\langle\ell m| \hat{L}_{z}\left|\ell^{\prime} m^{\prime}\right\rangle \propto$ $\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}}$.
For electric field calculations: it is possible to express the coordinates using the spherical functions: $x \propto r\left(Y_{11}-Y_{1-1}\right)$, $y \propto r\left(Y_{11}+Y_{1-1}\right)$, and $z \propto r\left(Y_{10}\right.$. Then apply the following rule: $\int Y_{\ell_{1} m_{1}}^{*} Y_{\ell_{2} m_{2}} Y_{\ell_{3} m_{3}} \sin \theta d \theta d \phi \neq 0$ only if $m_{1}+m_{2}+m_{3}=0, \ell_{1}+\ell_{2}+\ell_{3}$ is even, and $\left|\ell_{1}-\ell_{2}\right| \leq \ell_{3} \leq\left|\ell_{1}+\ell_{2}\right|$.

