PHYS 314
Problem set \# 1 (due January 28)
Each problem is 10 points.
Griffiths, Ch. 6: 6.5, 6.7 (this is a model of a one-dimensional crystal)
Q1 A particle with mass m moves in a potential given by

$$
U(x)= \begin{cases}\infty & \text { if }|x| \geq a \\ V_{0} & \text { if }|x|<b \\ 0 & \text { if } b \leq|x|<a\end{cases}
$$

where V_{0} is small. Treat this problem as a perturbation on the case of a particle in an infinite-sided square well potential of width $2 a$ and calculate the changes in the energies of the three lowest energy states to the first order in V_{0}. Explain qualitatively why odd-numbered states are affected by the perturbation more than even-numbered states.

Q2 Consider the case of a particle of mass m subject to a one-dimentional potential $U(x)$ where $U(x)=m \omega^{2} x^{2} / 2+\gamma x^{4}$. Calculate the energy of the ground state to the first order in γ.

Q3 A particle with mass m moves in a two-dimensional potential

$$
U(x, y)= \begin{cases}V_{0} x y / a^{2} & \text { if }|x|<a \text { and }|y|<a \\ \infty & \text { otherwise }\end{cases}
$$

where V_{0} is a constant, small enough for the term in $x y$ to be treated as perturbation. Obtain expressions for the energies of the ground and first excited states of this system to first order in V_{0}.

