Physics 313 Midterm test #2 November 8, 2023

Name (please print): Solutions
This test is administered under the rules and regulations of the honor system of the College of William & Mary.
Signature:
Final score:

Problem 3 (30 points)

A particle with mass m and total energy E approaches the potential barrier V(x) from the left, as shown: $V(x) = \begin{cases} 0 & x \le 0 \\ V_0 & 0 < x < L \\ 0 & x > L \end{cases}$ The height of the barrier is less than the particle total energy $V_0 < E$.

$$k_1 = \sqrt{\frac{2m(E-V_0)}{h^2}}$$

$$k = \sqrt{\frac{2mE}{h^2}}$$

- (a) Write down the general expression for the particle wave function $\psi(x)$ for all value of x.
- (c) Assuming that $E = \frac{\pi^2 \hbar^2}{2mL^2}$ and $V_0 = \frac{3\pi^2 \hbar^2}{8mL^2}$, calculate the reflection coefficient R of the particle from this barrier.

a)
$$\psi(x) = \begin{cases} Ae^{ikx} + Be^{-ikx} & x < 0 \\ Ce^{ik_1x} + De^{-ik_1x} & 0 < x < L \\ Fe^{ik_1x} + De^{-ik_2x} & x > L \end{cases}$$

Show all work to receive credit, and circle your final answers. This exam is closed book, but you can use a prepared index card with reference information that you have prepared.

$$A+B = -2iF$$

$$ik(A-B) = ik_1(-iF) = k_1 \cdot F = \frac{k_1}{2}i(A+B)$$

$$A-B = \frac{1}{4}(A+B)$$

$$B = \frac{3}{2}A$$

$$R = \frac{10}{2}$$

Problem 2 (30 points)

A particle with intrinsic spin one is placed in a constant external magnetic field B_0 in the y direction. The initial spin state of the particle is $|1,1\rangle$, that is, a state with $S_z=\hbar$. The Hamiltonian of the particle in the magnetic field is $\hat{H}=\omega_0\hat{S}_y$. Determine the probability that the particle is in the state $|1,-1\rangle$ at time t.

The eigenstates of the operator \hat{S}_y in terms of the eigenstates of \hat{S}_z are:

$$|S_{y} = h\rangle = \frac{1}{2} \binom{1}{1/2}, |S_{y} = 0\rangle = \frac{1}{\sqrt{2}} \binom{1}{0}, |S_{y} = -h\rangle = \frac{1}{2} \binom{1}{-i\sqrt{2}}.$$
To find the time evolution, we need to decompose the initial state in \hat{S}_{y} basis
$$\langle \hat{S}_{y} = t_{1} | f_{1} \rangle = \frac{1}{2} (1 - i\sqrt{2} - 1) \binom{1}{0} = \frac{1}{2}; \langle \hat{S}_{y} = t_{1} | f_{1} \rangle = \frac{1}{2} (1 i\sqrt{2} - 1) \binom{0}{0};$$

$$\langle \hat{S}_{y} = 0 | f_{1} \rangle = \frac{1}{12} (1 0 1) \binom{1}{0} = \frac{1}{12}; \langle \hat{S}_{y} = t_{1} | f_{1} \rangle = \frac{1}{2} (1 i\sqrt{2} - 1) \binom{0}{0};$$

$$|d(0)\rangle = |f_{1}|\rangle = \frac{1}{2} |S_{y} = t_{1}\rangle + \frac{1}{2} |S_{y} = t_{1}\rangle + \frac{1}{12} |S_{y} = 0\rangle$$

$$|d(0)\rangle = |f_{1}|\rangle = \frac{1}{2} |S_{y} = t_{1}\rangle + \frac{1}{2} |S_{y} = t_{1}\rangle + \frac{1}{2} |S_{y} = 0\rangle$$

$$|d(0)\rangle = \frac{1}{12} e^{-i\omega_{0}t} |S_{y} = t_{1}\rangle + \frac{1}{2} e^{i\omega_{0}t} |S_{y} = t_{1}\rangle + \frac{1}{12} |S_{y} = 0\rangle$$

$$\langle f_{1} - f_{1} | f_{1}\rangle = \frac{1}{2} e^{-i\omega_{0}t} \langle f_{1} - f_{1} | f_{2}\rangle + \frac{1}{2} e^{i\omega_{0}t} \langle f_{2} - f_{1} | f_{2}\rangle + \frac{1}{12} |S_{y} = 0\rangle$$

$$|f_{1} - f_{2}\rangle = \frac{1}{2} e^{-i\omega_{0}t} \langle f_{1} - f_{2}\rangle + \frac{1}{2} e^{i\omega_{0}t} \langle f_{2} - f_{2}\rangle + \frac{1}{12} |S_{y} = 0\rangle$$

$$|f_{2} - f_{2}\rangle = \frac{1}{2} e^{-i\omega_{0}t} |f_{2}\rangle + \frac{1}{2} e^{i\omega_{0}t} |f_{2}\rangle + \frac{1}{12} e^{-i\omega_{0}t} |f_{2}\rangle + \frac{1}{12} e^{-i$$

Show all work to receive credit, and circle your final answers. This exam is closed book, but you can use a prepared index card with reference information that you have prepared.

Potentially useful information

Spin-1/2 particle

$$\hat{S}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \ \hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \ \hat{S}_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Eigenstates for the spin operators:

$$|+z\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \; |-z\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}; \; |+x\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}; \; |-x\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}; \; |+y\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}; \; |-y\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$$

Spin-1 particle

$$\hat{S}_x = \hbar \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \hat{S}_x = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \hat{S}_y = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}.$$

Eigenstates of the \hat{S}_z operator (in the z-basis):

$$|1,1\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix}; \ |1,0\rangle = \begin{pmatrix} 0\\1\\0 \end{pmatrix}; \ |1,-1\rangle = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

The commutator of two operators is defined as $[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$.

Dirac delta function

$$\int_a^b \delta(x - x_0) dx = \begin{cases} 1 & a \le x_0 \le b \\ 0 & \text{otherwise} \end{cases}$$

$$\int_a^b \delta(x-x_0) f(x) dx = \left\{ \begin{array}{ll} f(x_0) & a \leq x_0 \leq b \\ 0 & \text{otherwise} \end{array} \right.$$

Kronecker delta symbol:
$$\delta_{nk} = \left\{ \begin{array}{ll} 1 & n=k \\ 0 & n \neq k \end{array} \right.$$
 Differential equations:

$$rac{d^2y}{dx^2}=-k^2y$$
, possible solutions $y_{1,2}=\sin(kx)$ and $\cos(kx)$ or $y_{1,2}=e^{\pm ikx}$ $rac{d^2y}{dx^2}=\kappa^2y$, possible solutions $y_{1,2}=e^{\pm\kappa x}$

Orthogonality of the trigonometric functions:

$$\int_{0}^{L} \sin \frac{\pi nx}{L} \sin \frac{\pi kx}{L} dx = \frac{L}{2} \delta_{nk},$$

$$\int_{0}^{L} \cos \frac{\pi nx}{L} \cos \frac{\pi kx}{L} dx = \frac{L}{2} \delta_{nk},$$

$$\int_{0}^{L} \sin \frac{\pi nx}{L} \cos \frac{\pi kx}{L} dx = 0$$

Potentially useful mathematical expressions

$$\begin{split} i \cdot i &= -1; \ i \cdot (-i) = 1; \ 1/i = -i; \\ e^{i\phi} &= \cos \phi + i \sin \phi; \ \cos \phi = (e^{i\phi} + e^{-i\phi})/2; \ \sin \phi = (e^{i\phi} - e^{-i\phi})/2i; \\ \left|e^{i\phi}\right|^2 &= 1; \\ \cos 2\phi &= \cos^2 \phi - \sin^2 \phi; \ \sin 2\phi = 2 \sin \phi \cos \phi \end{split}$$

Problem 1(40 points)

A particle of mass m is trapped inside the infinite square well potential well $V(x) = \begin{cases} 0 & -a \le x \le a \\ \infty & \text{elsewhere} \end{cases}$

(a) Verify that the wave functions

$$\psi_A(x) = \left\{ \begin{array}{l} \sqrt{\frac{1}{a}} \cos \left(\frac{\pi x}{2a} \right) & -a \leq x \leq a \\ 0 & \text{elsewhere} \end{array} \right. \text{ and } \psi_B(x) = \left\{ \begin{array}{l} \sqrt{\frac{1}{a}} \cos \left(\frac{3\pi x}{2a} \right) & -a \leq x \leq a \\ 0 & \text{elsewhere} \end{array} \right.$$
 are the eigenfunctions of this potential, and find the corresponding energy eigenvalues.

For the rest of the problem assume that the initial state of the particle is $\psi(x) = \frac{3i}{5}\psi_A(x) - \frac{4}{5}\psi_B$.

- (b) Write the time evolution of this state $\psi(x,t)$.
- (c) What is the average energy (E) of the particle in this state?
- (d) Write the expression to calculate the square of the average position $\langle x^2(t) \rangle$ of the particle in this state. Without evaluating the integral give an argument that it is time-dependent.

a) Schrödinger equation
$$-\frac{t^2}{2m}\frac{d^2\psi}{dx^2} = E\psi$$

$$4a! \left(-\frac{t^2}{2m}\right) \left(-\frac{\pi^2}{4a^2}\right) \frac{1}{\sqrt{a}} \cos \frac{\pi x}{2a} = E_A \frac{1}{\sqrt{a}} \cos \frac{\pi x}{2q}; E_A = \frac{\pi^2 t^2}{8ma^2}$$

$$\frac{x}{48:\left(-\frac{t^{2}}{2m}\right)\left(-\frac{q\pi^{2}}{4a^{2}}\right)\frac{1}{4a^{2}}\cos^{3}\left(\frac{\pi}{2a}\right)} = \frac{1}{4a^{2}}\cos^{3}\left(\frac{\pi}{2a}\right)\frac{1}{4a^{2}}\cos^{3}\left(\frac{\pi}{2a}\right)}{16a^{2}\cos^{3}\left(\frac{\pi}{2a}\right)} = \frac{1}{8a^{2}}\cos^{3}\left(\frac{\pi}{2a}\right)\frac{1}{4a^{2}}\cos^{3}\left(\frac{\pi}{2a}\right)$$

6)
$$\psi(x_1t) = \frac{3i}{5} \psi_A(x) e^{-iE_At/t} - \frac{4}{5} \psi_B(x) e^{-iE_Bt/t}$$

$$\langle E \rangle = E_A \cdot \left(\frac{3}{5}\right)^2 + E_B \left(\frac{4}{5}\right)^2 = \left(\frac{9}{25} + \frac{16 \cdot 9}{25}\right) \frac{\pi^2 h^2}{8mq^2} = \frac{153}{200} \frac{\pi^2 h^2}{ma^2}$$

d)
$$\langle x_{i}^{2}t\rangle = \int_{-a}^{q} \psi^{*}(x_{i}t) \cdot x^{2} \psi(x_{i}t) dx = \int_{-a}^{q} |\psi(x_{i}t)|^{2} \cdot x^{2} dx$$

$$|\psi(x_{i}t)|^{2} = \left(\frac{3i}{5}\psi_{A}(x)e^{-iE_{A}t/t} - \frac{4}{5}\psi_{B}(x)e^{-iE_{B}t/t}\right) \times e^{-iE_{B}t/t}$$

with reference information that you have prepared.

Since
$$\int_{-a}^{a} \Psi_{A}(x) \Psi_{B}(x) \cdot x^{2} dx \neq 0$$
 then there will be the time-dependent term in $\langle x^{2} \rangle$