Homework \#10 (due Nov. 11)

Each problem is 10 points
Textbook problems 11.4, 11.6
Problem A1: The refractive index of a gas is measured to be $n=1.00034+0.00005 i$. Calculate the value of the absorption coefficient for the 632 nm wavelength laser beam.

Problem A2: The transmission spectra of Er^{3+} ions in LaF_{2} crystal is shown in the figure below. If we use a
 classical oscillator model for each of the observed resonances, what are the values of ω_{0} and γ for each of the resonances?

Problem A3: Some types of spectrometers used to study atomic resonances give an output signal proportional not to the atomic absorption line $\beta(\omega)$, but rather to its first derivative $d \beta / d \omega$. This firstderivative curve has two peaks of opposite sign centered about the resonance frequency ω_{0}. Find the spacing between these two peaks $\Delta \omega$ in terms of the parameters of an atomic resonance ω_{0} and γ.

Extra credit problem: This is a picture of a column of corn syrup illuminated from the top by linearly polarized white light. If the light is polarized, colored bands show up when viewed from the side. If I

Photo by Richard Allen remover the polarizer, colors disappear. Can you figure out where the colors are coming from? Hint: the corn syrup is optically active material, i.e. its rotates the polarization of light.

Please ignore the white flakes - these are some clumps of sugar-loving bacteria infesting my experiment, and not supposed to be there.

