Molecules (cont)

Covalent bond: two atoms (often identical) are bound by attraction via shared electrons.

Simplest example: H_2 molecule

\[\phi_0 (r) \propto e^{-r/a_0} \]

Single H atom in ground electronic state

Single potential well

\[P_{\text{tr}} = 4\pi r^2 |\psi_0 (r)|^2 \propto r^2 e^{-2r/a} \]

Probability density distribution

Molecule = double potential well

\[X_{\text{em}} = \frac{x_2 + x_1}{2} \]

\[R = x_2 - x_1 \]

\[X_1 = X_{\text{em}} - \frac{R}{2} \]

\[X_2 = X_{\text{em}} + \frac{R}{2} \]
Electrons can tunnel from one atom to another \(\Rightarrow \) joint wave function

Symmetric potential (w/respect to the center of mass)

\[\Psi \]

Joint wave function must be either symmetric or antisymmetric.

Symmetric: \(\Psi_+ (\vec{r}_1, \vec{r}_2) = \Psi_1 (\vec{r}_1) + \Psi_2 (\vec{r}_2) \)

Anti-symmetric: \(\Psi_- (\vec{r}_1, \vec{r}_2) = \Psi_1 (\vec{r}_1) - \Psi_2 (\vec{r}_2) \)

We can use a form of a single atom electron wave function to roughly estimate the electron wavefunction contributions for a molecular states.

Two atoms very far away

\[x_{cm} - R/2 \quad x_{cm} \quad x_{cm} + R/2 \]

Each electron is centered around each proton.
Two atoms close by

Symmetric case

\[\psi_0(r_1) \]

\[\phi_0(r_2) \]

Highest electron density b/w two protons

\[\bar{e} + \bar{e} \]

\[p \rightarrow p \]

Protons are effectively attracted

Anti-symmetric case

\[-\psi_0(r_2) \]

Electrons are mostly outside

\[\bar{e} \rightarrow \bar{e} \]

\[p \rightarrow p \]

Protons are effectively repulsed

\[E \]

\[R_0 \]

\[R \]

anti-symmetric case

anti-bound orbital

(spin of two electrons are ↑↓)

symmetric case

bound orbital

(spins of two electrons are ↑↑)

\[B = 4.5 \text{ eV} \]

To break this molecule it is enough to flip the spin of one of the electrons, and move from bound to anti-bound state (photo dissociation)