Single particle quantum state

Let us assume that some particle (an electron) can be in only two distinguishable quantum states:

Electron spin \(S = \frac{1}{2} \), \(S_z = \pm \frac{1}{2} \)

Two states: spin up \(\uparrow \) (\(S_z = \frac{1}{2} \)) and spin down \(\downarrow \) (\(S_z = -\frac{1}{2} \))

In principle, it can be any superposition of these two states:

\[\psi = A \psi_\uparrow + B \psi_\downarrow = A \uparrow + B \downarrow \]

Measurement collapses the wave function!

\(A \uparrow + B \downarrow \) (Measurement) \(\Rightarrow \) \(\uparrow \) with \(P = |A|^2 \)

\(A \uparrow + B \downarrow \) \(\Rightarrow \downarrow \) with \(P = |B|^2 \)

After the measurement, the state changes.

Two independent particles

\[\psi_1 = A_1 \uparrow + B_1 \downarrow \quad \psi_2 = A_2 \uparrow + B_2 \downarrow \]

\[P_{\psi_1\psi_2} = P_{\psi_1} \cdot P_{\psi_2} = |A_1|^2 |B_2|^2 \]

Two-particle wave function \(\psi_{12} = \psi_1 \cdot \psi_2 = (A_1 \uparrow + B_1 \downarrow)(A_2 \uparrow + B_2 \downarrow) \)

Measurement of one particle does not tell anything about the other.
Correlated particles

\[S_z^1 \quad \circlearrowleft \quad \circ \quad \circlearrowright \quad S_z^2 \]

Total spin must remain zero, so two possibilities:

- \(S_{1z} = \frac{1}{2} \quad S_{2z} = -\frac{1}{2} \quad \left| \uparrow \right>_1 \left| \downarrow \right>_2 \)
- \(S_{1z} = -\frac{1}{2} \quad S_{2z} = \frac{1}{2} \quad \left| \downarrow \right>_1 \left| \uparrow \right>_2 \)

Two particle wave function:

\[\psi_{1,2} = \frac{1}{\sqrt{2}} \left(\left| \uparrow \right>_1 \left| \uparrow \right>_2 - \left| \uparrow \right>_1 \left| \downarrow \right>_2 \right) \]

Such two particles are entangled:

Knowing something about one of them provides information about the other!

That gives rise to an EPR paradox.

For example:

Quantum mechanics does not allow knowing two components of angular momentum at the same time.

One can measure \(S_z \) or \(S_x \), but not both!

Entangled particles

Stern-Gerlach apparatus (SGA) measures z-component (or x-component) depending on orientation.
\[\Psi_2 = \frac{1}{\sqrt{2}} (|\uparrow\rangle_1 |\downarrow\rangle_2 - |\downarrow\rangle_1 |\uparrow\rangle_2) \] along z-direction

at the same time

\[\Psi_2 = \frac{1}{\sqrt{2}} (|\uparrow\rangle_1 |\downarrow\rangle_2 - |\downarrow\rangle_1 |\uparrow\rangle_2) \] along x-direction

\(\mathbf{S}_z \):
- \(S_{z1} = +\frac{1}{2} \), \(|\uparrow\rangle \)
- \(S_{z2} = -\frac{1}{2} \), \(|\downarrow\rangle \)

\(\mathbf{S}_x \):
- \(S_{x1} = +\frac{1}{2} \)
- \(S_{x2} = -\frac{1}{2} \)

Particle 1: \(S_z = \frac{1}{2} \), \(S_x = \frac{1}{2} \) is QM wrong?!

No

First measurement collapses the wave function

\[\Psi_2 \rightarrow (|\uparrow\rangle_1 |\downarrow\rangle_2) \]

but \(|\downarrow\rangle_2 = \frac{1}{\sqrt{2}} (|\uparrow\rangle_2 - |\downarrow\rangle_2) \)

If you measure S_x now, you lose information about S_z

\[
\text{angle b/w detectors}
\]

\[
\text{angle b/w detectors}
\]
Bell's inequality

Locality - each particle has to carry all the information with it, even if it is not measured.

\[x = \pm \frac{1}{2}, \quad y = \pm \frac{1}{2}, \quad z = \pm \frac{1}{2} \]

\[a \quad b \quad c \]

\[P_a \rightarrow S_x = \pm \frac{1}{2}, \quad P_b \rightarrow S_y = \pm \frac{1}{2}, \quad P_{ac} \rightarrow S_{x_1} = \frac{1}{2}, \quad S_{y_1} = \frac{1}{2} \]

\[P_{ab} + P_{bc} \geq P_{ac} \]

If Bell's inequality is true - the system can be described by local variables; violation of Bell's inequality means QM correlation.