Physics 201, Fall 2018
Problem Set \#7 (due Friday, Oct. 26)
Each problem is 10 points.

Problems from Serway, Moses and Moyer:

$6.20,6.21,6.23,6.24,6.37,7.2,7.4,7.5$
Additional (required) problems
A1: A particle of mass m moves in the harmonic oscillator potential energy
$U(x)=\frac{1}{2} m \omega^{2} x^{2}$.
The normalized energy eigenfunctions are denoted by $\psi_{\mathrm{n}}(x)$ and the corresponding energies are $E_{n}=\hbar \omega\left(n+\frac{1}{2}\right), \mathrm{n}=1,2,3 \ldots$ Suppose that at time $\mathrm{t}=0$ the wave function of particle is $\psi(x)=\frac{\sqrt{3}}{2} \psi_{0}(x)+\frac{1-i}{2 \sqrt{2}} \psi_{1}(x)$.
(a) Determine the time dependence of the wave function. That is, what is $\Psi(x, t)$?
(b) What is the probability of obtaining $\hbar \omega / 2$ if a measurement of the particle energy is made? Of obtaining $3 \hbar \omega / 2$? Of obtaining $5 \hbar \omega / 2$?

Do these probabilities vary with time?

A2. "Solve" the time-independent Schrödinger equation for a particle of mass m and energy $E>V_{0}$ incident from the left on the step potential $V(x)=\left\{\begin{array}{cc}V_{0} & x<0 \\ 0 & x>0\end{array}\right.$. Determine the reflection coefficient R and the transmission coefficient T .

