Problems from Serway, Moses and Moyer (each problem is 10 points)
$2.20,2.21,2.23,2.29,2.30,2.31$

Review problems (each problem is 5 points)
R1. Using Euler's formular $e^{i x}=\cos x+i \sin x$, calculate: $e^{-i \pi}, e^{i 5 \pi / 2}, e^{-i \pi / 2}, e^{i \pi / 4}, e^{-i \pi / 6}$.
R2. Same function can be expressed in a form of regular trigonometric functions $\psi(x)=A \cos x+B \sin x$, and in a form of complex exponents $\psi(x)=\alpha e^{i x}+\beta e^{-i x}$. Express coefficients α and β in terms of A and B.

R3. A classical particle mass $m=0.5 \mathrm{~kg}$ with total energy $E_{1=-3.0 J}$, is placed in a potential well shown to the right; i.e., the potential
energy is defined as: $U(x)=\left\{\begin{array}{r}-V_{0},|x|<a \\ 0,\end{array}|x| \geq a\right.$ Here the depth of the well is $V_{0}=5.0 \mathrm{~J}$, and its size $a=1.1 \mathrm{~m}$.
a) In what range of x the particle can be found?
b) Sketch the velocity of the particle as a
 function of position.

R4. Now, the total energy of the same particle is change to be $E_{2}=2.0 \mathrm{~J}$ (all other parameters stay the same).
a) In what range of x the particle can be found?
b) Sketch the velocity of the particle as a function of position.

Note 1: obviously, the particle is non-relativistic, so it is safe to use $\mathrm{K}=\mathrm{mv}^{2} / 2$ expression for the kinetic energy. And total energy is the sum of the kinetic and potential energy (without accounting for the rest energy).

Note 2: feel free to plot the velocity graphs on the computer, if it is more convenient.

