Physics 102H Midterm test #3 April 11 2025

Name (please print):Solutions
This test is administered under the rules and regulations of the honor system of the College of William & Mary.
Signature:
Final score:

Some useful constants

Show all work to receive credit, and circle your final answers. This exam is closed book, and you can use calculators only for simple arithmetical operations.

.Problem 1 (25 points)

a) Find the magnitude of magnetic field at point P if the loop shown below carrying the electric current I. The angle between two straight segments is 90°, and the radius of the ark is R.

b) If the magnetic field direction at point P is into the page, does the current in the loop flow clockwise or counterclockwise?

$$dB = \frac{l_0}{4\pi} \cdot I \quad \frac{d\ell}{R^2} \rightarrow \frac{3}{4} \quad \text{eircum ference} = \frac{3T}{2} \cdot R$$

$$B = \frac{l_0}{4\pi} \cdot I \quad \frac{1}{R^2} \cdot \frac{3\pi}{2} \cdot R = \frac{3l_0}{8} \cdot \frac{I}{R}$$

c) A proton (positive electric charge +e) is dropped at point P with known velocity \vec{v} directed as shown. Calculate the magnitude and the direction of the force acting on the proton at this point.

$$f_8 = q \cdot v \cdot B = e \cdot v \cdot \frac{3\mu_0}{8} \frac{\Gamma}{R}$$
vertical up

Problem 2 (40 points)

A conducting rod (mass m, resistance R) rests on two frictionless and resistanceless parallel rails a distance ℓ apart in a uniform magnetic field B perpendicular to the rails and the rod, as shown. At t=0, the rod is at rest and a source of emf is connected to the points a and b.

Determine the speed of the rod as a function of time

- a) If the source puts out a constant current I_0 .
- b) If the source puts out a constant emf \mathcal{E}_0 .
- c) Does the rod reach a terminal speed in either case? If so, what is it?

<u>Hint</u>: a solution of the differential equation $\frac{dy}{dt} = A - \beta y$ is $y(t) = \frac{A}{\beta} (1 - e^{-\beta t})$, if y(t=0) = 0.

a) Force on the moving wire

$$F_{B} = I \cdot B \qquad I = coust \rightarrow motion with constant$$

$$a = \frac{F_{B}}{m} = \frac{I \cdot B}{m} \qquad V(t) = a \cdot t = \frac{I \cdot B}{m} \cdot t$$

$$no \quad terminal \quad velocity \qquad I$$

$$Eind = \frac{d}{dt} \cdot P_{B} = B \cdot V \qquad V(t) = \frac{E_{0} - Eind}{R} \cdot V \qquad A = \frac{B \cdot V}{R} \cdot V$$

Show all work to receive credit, and circle your final answers. This exam is closed book, and you can use calculators only for simple arithmetical operations.

Problem 3 (35 points)

In the circuit shown here determine the current in each resistor at the moment ...

a) immediately after the switch is closed.

$$I_{R_1} = I_{R_2} = \frac{\varepsilon}{R_1 + R_2} = \frac{14 \text{ V}}{11502} = 0.124$$

b) a long time after the switch is closed.

$$I_{R_1} = 0$$

$$T_{R_2} = \frac{\varepsilon}{R_2} = \frac{14V}{800} = 0.175A$$

c) Sketch the graph of current through the resistors R₁ and R₂ as a function of time.

d) Write the set of Kirchhoff's equations for calculations of currents as function of time, when the switch is closed (you do not need to solve them).

$$\begin{cases} I_2 = I_1 + I_L \\ \mathcal{E} - I_1 R_2 - I_1 R_1 = 0 \end{cases}$$

$$I_1 R_1 - L \frac{dI_L}{dt} = 0$$

or

Show all work to receive credit, and circle your final answers. This exam is closed book, and you can use calculators only for simple arithmetical operations.