

Experimental evidence for the Θ^+ **pentaquark**

Keith Griffioen

email: griff@nikhef.nl, tel: +31-20-592-2122

Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF)

College of William & Mary, Williamsburg, VA

- Hadrons come in qqq and $q\bar{q}$ configurations.
- QCD does not prohibit other quark combinations.
- Pentaquarks had been proposed (as early as 1976) but never seen (Lipkin, hep-ph/9804218).
- The first reported observations of a $qqqq\bar{q}$ pentaquark state have appeared in July 2003.
- At least 7 different experiments see a peak near 1540 MeV in either the pK_s^0 or nK^+ mass spectrum.
- At present there are no angular distributions or reliable cross sections for the observed peaks.

Pentaquark Predictions

- Why might we see a peak
 - statistical fluctuation
 - reflection of a higher-mass resonance
 - analysis cuts or detector acceptance
 - a peak exists
- Why might we not see a peak
 - too much background
 - poor resolution
 - insensitive reaction mechanism
 - a peak does not exist

Where's Waldo?

Can you find Waldo in this picture?

Where's Waldo? (100)

NIKHEF 27/2/04 - p.6/38

Where's Waldo? (50)

NIKHEF 27/2/04 - p.7/38

Where's Waldo? (30)

Where's Waldo? (20)

Where's Waldo? (10)

LEPS at SPring-8

• $MM_{\gamma K^{\pm}}^{c} = MM_{\gamma K^{\pm}} - MM_{\gamma K^{+}K^{-}} + M_{N}$

- (a) CH target. Solid: K^+K^- signal sample.
 Dashed: *p* tag showing $\gamma p → K^+\Lambda(1520) → K^+K^-p$
- (b) Solid: CH target signal sample. Dashed: LH₂ target, same cuts.

A. Dolgolenko *et al.*, hep-ex/0304040 K^+ Xe $\rightarrow K_s^0 p$ Xe' $M_{\Theta^+} = 1539 \pm 2$ MeV $\Gamma < 9$ MeV $N_s/\sqrt{N_b} = 4.4$

(a) all measured $K^0 p$ events (b) $K^0 p$ events with K^0

and p in the forward direction and on opposite sides of the beam

S. Stepanyan *et al.*, hep-ex/0307018 $\gamma d \rightarrow p K^-(K^+n)$ $M_{\Theta^+} = 1542 \pm 5$ MeV $\Gamma < 21$ MeV $N_s/\sqrt{N_b} = 5.3$

signal (solid) $\Lambda(1520)$ events (dotted)

SAPHIR, ELSA, Bonn

• (a) $\pi^+\pi^-$ spectrum for nK^+ cut on Θ^+

• (b) nK^+ with $\pi^+\pi^-$ sideband background subtraction

CLAS, Jefferson Lab

V. Kubarovsky *et al.*, hep-ex/0311046 $\gamma p \to \pi^+ K^- (K^+ n)$ $M_{\Theta^+} = 1555 \pm 10$ MeV $\Gamma < 26$ MeV $N_s/\sqrt{N_b} = 7.8$

BEBC, CERN & 15' Bub. Ch., FNAL

A. Asratyan *et al.*, hep-ex/0309042 $\nu(\bar{\nu})A \rightarrow K_s^0 p X$ $M_{\Theta^+} = 1533 \pm 5$ MeV $\Gamma < 20$ MeV $N_s/\sqrt{N_b} = 6.7$

Upper: full spectrum Lower: expanded scale around the peak

hepex/0312044 $\gamma d \to K_s^0 p X$ $M_{\Theta^+} = 1528 \pm 3 \text{ MeV}$ $\Gamma < 17 \text{ MeV}$ $N_s/\sqrt{N_b} = 4.7$

The HERMES experiment

HERMES Event Selection

HERMES K_s Identification

• K_s^0 from $\pi^+\pi^ \square$ M_K error < 1 MeV background is small • width $\sigma = 7 \text{ MeV}$ \square 2σ cuts on K_s 1 MeV agreement with PDG mass for: $\rho(770)[\pi^+\pi^-]$ $\phi(1020)[K^+K^-]$ $\bar{\Lambda}(1116)[\bar{p}\pi^+]$ $\Lambda^{*}(1520)[K^{-}p]$

HERMES MC and pK data

- Left: MC simulation with $\Gamma = 2$ MeV, M = 1540 MeV. MC result: $M = 1540 \pm 0.3$ MeV and $\sigma = 7 \pm 0.2$ MeV.
- Right: K^-p and K^+p spectra

The CLAS spectrometer

 $E_e = 2.474, 3.115 \text{ GeV}$ $10^{-4} \text{ r.l. radiator}$ photon tagger $4 \times 10^6 \gamma/\text{S}$ $2.3 \times 10^{12} \gamma > 1.51 \text{ GeV}$ 3–5% energy resolution

CLAS Deuteron

CLAS Proton

left: Possible signal and background right: missing mass

CLAS Proton

- left: $M(nK^+)$ without cuts
- right: $M(nK^+K^-)$ in Θ^+ peak and above (inset)

Comparison of Experiments

Seven experiments all show a peak with width less than each experiment's resolution at a consistent value of mass World average is M = 1536 ± 3 MeV

A.R. Dzierba, *et al.*; *KKN* exclusive final states
 Dalitz plot; *M*(*nK*⁺) for *a*₂ with |Y₂^{±1}|² and *ρ*₃ with |Y₃^{±1}|²

- A.R. Dzierba, et al.; $M(nK^+)$ and $M(K^+K^-)$ spectra
- Some hint of a peak, but it's too broad and $M(K^+K^-)$ doesn't match
- Data are from CLAS (deuteron)

Are there resonance peaks in these spectra?

With gaussian fits

Now, with better statistics

With gaussian fits

Better statistics still

• Gaussian distributions: $\mu = 1.65$, $\sigma = 0.2$; 200, 400, 1000 events.

Expt	Reaction	$\Delta \Omega$ (%)	E_{beam} (GeV)
SPring-8	$\gamma^{12}\mathbf{C} \to K^+K^-(n)$	3	1.5–2.35
DIANA	$K^+Xe \rightarrow K^0p(Xe')$	100	0.850
SAPHIR	$\gamma p \to K^+ K^0_s(n)$	60	0.87–2.6
CLAS	$\gamma d \to K^+ K^- p(n)$	50	1.51–3.10
BEBC/15'	$\nu[\bar{\nu}]$ Ne[D] $\rightarrow K^0_s p\mu(X)$	100	57
HERMES	$\gamma^* d \to p K^0_s(X)$	1	27.6
CLAS	$\gamma p \to \pi^+ K^- K^+(n)$	50	3–5.47

Expt	Detectors	Cuts applied
SPring-8	SSD,DC,TOF,B,Ch	$M_{\gamma KK} \neq M_n; M_{KK} \neq M_\phi; p_h > 0.35;$
		$ec{p_h}$ in SSD acc.; no signal in SSD w/i 45mm
DIANA	BubbleC,B=0	$L_{K^0} > 2.5$ mm; $P_{K^+} < 0.53; P_{K^0_s} > 0.17;$
		$\theta_{p,K^0} < 100^\circ; \cos\phi_{pK^0} < 0$
SAPHIR	B,DC,TOF	$M_{\pi\pi} = M_{K^0}; \cos \theta_{K^0_s} > 0.5$
CLAS	DC,B,Ch,TOF,Cal	$\Delta t < 0.75$ ns; $p_{K^+} < 1.0; p_n > 0.08;$
		$M_{pK^-} \neq M_{\Lambda(1520)}$; $M_{KK} \neq M_{\phi}$
BEBC/15'	BubbleC,B	$p_{\mu} > 4; 0.3 < p_p < 0.9$
HERMES	DC,B,TOF,Cal,RICH	$V_{\pi\pi} < 10$ mm; $V_{pK_s^0} < 4$ mm; $L_{K_s^0} > 70$ mm;
		$4 < p_p < 9; 1 < p_{\pi} < 15; M_{\pi\pi} = M_{K_s^0}$
CLAS	DC,B,Ch,TOF,Cal	$-t < 0.28 \text{ GeV}^2; \cos heta_K^* < 0.6; \cos heta_{\pi^+}^* > 0.8$
		$M_{\pi KK} = M_n$

Expt	N_s	N_b	M_{Θ^+}	Γ	Ex	MC
SPring-8	19	17	$1540 \pm 10 \pm 50$	< 25	Y	Ν
DIANA	29	44	$1539 \pm 2 \pm \text{few}$	< 9	Y	Ν
SAPHIR	55	56	$1540 \pm 4 \pm 2$	< 25	Y	Ν
CLAS	43	54	$1542 \pm 2 \pm 5$	< 21	Y	Y
BEBC/15'	27	8	1533 ± 5	< 20	Ν	Ν
HERMES	60	130	$1528 \pm 2 \pm 2$	< 20	Ν	Y
CLAS	38	24	$1555 \pm 1 \pm 10$	< 26	Y	Ν

- $uudd\bar{s}$ state seen with mass 1536 ± 3 MeV.
- Little is known about the quantum numbers.
- Probably I = 0: no state in pK^+ mass spectrum.
- Much more data is expected: JLab CLAS E03-113 approved for 30 days with 20× current statistics; HERMES improved trigger; etc.
- ⊖⁺ is difficult to find in *pp* reactions where combinatorial backgrounds are high. Maybe ⊖⁺ is fragile.
- CERN NA49 hep-ex/0310014 (8 Oct): first evidence for $ddss\bar{u}$; $N_s/\sqrt{N_b} = 4.0$; Ξ^{--} at 1862 ± 2 MeV; $\Gamma < 18$ MeV. Unverified by other experiments.