

The $d(e, e'p_s)$ (DEEPS) Experiment at JLab

(CLAS E6 Run Group).

Keith Griffioen

email: griff@nikhef.nl, tel: +31-20-592-2122

Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF) College of William & Mary, Williamsburg, VA

- Data collected from 30 January to 16 March 2002
- $E_{\text{beam}} = 5.77 \text{ GeV}$
- Beam current: 7 nA
- Liquid deuterium target
- Luminosity: 10^{34} cm⁻²s⁻¹
- Integrated luminosity: 14.4 fb⁻¹
- CLAS field: 2250 A inbending
- Trigger: good electron
- Trigger rate: 3000 per second
- Events: 3.5 billion

- Electron scatters from a neutron in deuterium
- The spectator proton is detected along with the scattered electron
- One wishes to minimize final-state interactions with the proton
- CLAS can detect protons down to about 250 MeV/c from 40–140°

$$\begin{array}{l} Q^{2} \equiv -q^{2} = -(e-e')^{2} \equiv \vec{q}^{2} - \nu^{2} & x \equiv Q^{2}/2p \cdot q \\ \vec{p} \text{ is spectator momentum} & y \equiv p \cdot q/p \cdot e \\ E_{s} = \sqrt{m^{2} + \vec{p}^{2}} & \alpha = (E_{s} + p_{\parallel})/m \\ E^{*} = \sqrt{m^{*2} + \vec{p}^{2}} \\ E_{s} + E^{*} = 2m \\ p \cdot q = (2m - E_{s})\nu - p_{\parallel}q = m\nu(2 - [E_{s} + p_{\parallel}(q/\nu)]/m) \\ x \approx x_{\text{Bj}}/(2 - \alpha) \\ \frac{d\sigma_{2N}}{dxdQ^{2}d\alpha d^{2}p_{\perp}} = \\ \frac{4\pi\alpha_{\text{EM}}^{2}}{Q^{4}} \left[y^{2}F_{1}(x,Q^{2}) + (1 - y - \frac{m^{2}y^{2}x^{2}}{Q^{2}})\frac{F_{2}(x,Q^{2})}{x} \right] |\psi_{LC}(\alpha,p_{\perp})|^{2} \\ |\psi_{LC}(\alpha,p_{\perp})|^{2}d\alpha d^{2}p_{\perp} = |\psi_{NR}(|\vec{k}|^{2})|^{2}d^{3}k \\ \vec{p}_{\perp} = \vec{k}_{\perp} \\ \alpha = \frac{k_{\parallel}}{\sqrt{m^{2} + \vec{k}^{2}}} + 1 \end{array}$$

CLAS spectrometer

 $E_e = 5.8, 4.2, 2.6 \text{ GeV}$ LD target Luminosity: 10^{34} /cm²s green: EM calorimeter magenta: Cherenkov red: TOF scintillators blue: drift chambers yellow: SC magnet

E6 Deuteron Target

5cm long cell
conically shaped
0.7–1.2 cm diameter maximizes flow while minimizing material the slow protons encounter
right side shows super insulation around target

Tagged Electron Scattering Event

Actual CLAS quasielastic scattering event with inbending electron and backward-going spectator proton

CLAS Kinematics

Spectator Momentum Dependence

Spectator momentum distribution p_s for: left: $\cos \theta_{pq} < -0.3$ right: $-0.3 < \cos \theta_{pq} < 0.3$ and for: top: $W^* < 1.1 \text{ GeV}$ middle: $1.1 < W^* < 2.0$ GeV bottom: $W^* > 2.0 \text{ GeV}$ with: curves: spectator model

Quasi-Elastic Scattering

 $F_2^n(x,Q^2)S(\alpha_s,p_T)$ • $Q^2 = 1.8 \text{ GeV}^2$ • $W^* = 0.94 \text{ GeV}$ • $p_T = 0.3, 0.4,$ 0.5, 0.6 GeV/c solid black: spectator model with light-cone wave function dashed red: spectator model with nonrelativistic wave function

α_s Dependence

α_s **Dependence**

$\cos \theta_{pq}$ Dependence

 $\cos \theta_{pq}$ Dependence

- CLAS has extensive data on tagged structure functions
- Final state interactions dominate at forward angles
 θ_{pq}
- The data follow the spectator model reasonably well
- Some hints of interesting deviations are apparent for extreme kinematics