New experimental constraints on the polarizability corrections in the hydrogen hyperfine structure

Keith Griffioen
email: griff@physics.wm.edu

Dept. of Physics
College of William \& Mary, Williamsburg, VA

Outline

- Introduction to the world's smallest electron accelerator
- How I became amazed that the hyperfine splittings in hydrogen are not infinite
- Prerequisites:
$Q^{2}, x=Q^{2} / 2 M \nu$
Elastic form factors: $G_{E}\left(Q^{2}\right), G_{M}\left(Q^{2}\right), F_{1}\left(Q^{2}\right)$,
$F_{2}\left(Q^{2}\right)$
Inelastic structure functions: $F_{1}\left(x, Q^{2}\right), F_{2}\left(x, Q^{2}\right)$,
$g_{1}\left(x, Q^{2}\right), g_{2}\left(x, Q^{2}\right)$
- SLAC:
- JLab, Bonn, Mainz: $10^{2} \mathrm{~m}$
- Hydrogen atom: $10^{-10} \mathrm{~m}$

Bohr radius $a=52918 \mathrm{fm}$ proton radius $\sim 1 \mathrm{fm}$ electron momentum $p \sim 4 \mathrm{keV}$ $\psi_{100}(r)=\frac{1}{\sqrt{\pi a^{3}}} e^{-r / a}$
The electron feels the internal structure of the proton. Hydrogen is the world's smallest electron accelerator. Precise measurements of energy levels allows us to do nuclear physics with the atom.

Hyperfine Splittings

- $\vec{\mu}_{p}=\frac{g e}{2 M} \mathbf{S}_{\mathbf{p}}$ and $\vec{\mu}_{e}=-\frac{e}{m} \mathbf{S}_{\mathbf{e}}$ $g=5.59, M(m)$ is proton (electron) mass

- $\mathbf{B}=\frac{\mu_{0}}{4 \pi r^{3}}[3(\vec{\mu} \cdot \hat{r}) \hat{r}-\vec{\mu}]+\frac{2 \mu_{0}}{3} \vec{\mu} \delta^{3}$ (r) (dipole)
$H=-\vec{\mu}_{e} \cdot \mathbf{B}_{\mathbf{p}}=\frac{\mu_{0} g e^{2}}{8 \pi M m} \frac{\left[3\left(\mathbf{S}_{\mathbf{p}} \cdot \hat{\mathbf{r}}\right)\left(\mathbf{S}_{\mathbf{e}} \cdot \hat{\mathbf{r}}\right)-\mathbf{S}_{\mathbf{p}} \cdot \mathbf{S}_{\mathbf{e}}\right]}{r^{3}}+\frac{\mu_{0} g e^{2}}{3 M m} \mathbf{S}_{\mathbf{p}} \cdot \mathbf{S}_{\mathbf{e}} \delta^{3}(\mathbf{r})$
Expectation value of first term vanishes
- $E_{\mathrm{hf}}=\frac{\mu_{0} g e^{2}}{3 \pi M m a^{3}}\left(\mathbf{S}_{\mathbf{p}} \cdot \mathbf{S}_{\mathbf{e}}\right)$ using ψ_{100}
- $\mathbf{S}=\mathbf{S}_{\mathbf{e}}+\mathbf{S}_{\mathbf{p}}$ implies $\mathbf{S}_{\mathbf{p}} \cdot \mathbf{S}_{\mathbf{e}}=\frac{1}{2}\left(S^{2}-S_{e}^{2}-S_{p}^{2}\right)=-\frac{3}{4}\left(\frac{1}{4}\right)$ for $S=0(1)$.
- $\Delta E \equiv E_{F}^{p}=\frac{4 g \hbar^{4}}{3 M m c^{2} a^{4}}=5.88 \times 10^{-6} \mathrm{eV}$ (Fermi energy)
- $\nu=\frac{\Delta E}{h}=1.420 \mathrm{GHz} ; \lambda=\frac{c}{\nu}=21 \mathrm{~cm}$.

This 21 cm line is ubiquitous in the universe.

Double Photons

- Intense lasers make double photon transitions in atoms possible
- Doppler broadening is greatly reduced with two photons
- A moving atom sees a photon with energy $\gamma(1+\beta) k \approx(1+\beta) k$, but sees a combined two-photon energy of $\gamma 2 k^{\prime} \approx\left(1+\beta^{2} / 2\right) 2 k^{\prime}$ for $\beta \ll$ 1.Scanned absorption spectrum is much narrower for 2 photons.
(see F. Biraben et al., Springer LNP570(01)17.)

HFS Pieces

- see Brodsky, Carlson, Hiller and Hwang, PRL94(05)022001,169902(E).
$E_{\mathrm{hfs}}\left(e^{-} p\right)=E_{F}^{p}\left(1+\Delta_{\mathrm{QED}}+\Delta_{R}^{p}+\Delta_{S}+\Delta_{\mathrm{hvp}}^{p}+\Delta_{\mu \mathrm{vp}}^{p}+\Delta_{\text {weak }}^{p}\right)=$ $1.4204057517667(9) \mathrm{GHz}$
- $\Delta_{\mathrm{QED}}=1136.09(14) \mathrm{ppm}\left(\frac{\alpha}{2 \pi}+\ldots\right)$
- $\Delta_{R}^{p}=5.86(15) \mathrm{ppm}$ (recoil)
- $\Delta_{\mathrm{hvp}}^{p}=0.01 \mathrm{ppm}$ (hadronic vacuum polarization)
- $\Delta_{\mu \mathrm{vp}}^{p}=0.07 \mathrm{ppm}$ (muonic vacuum polarization)
- $\Delta_{\text {weak }}^{p}=0.06 \mathrm{ppm}$ (weak interaction)
- $\Delta_{S}=-38.62(16) \mathrm{ppm}$ (nucleon structure; deduced)
- Δ_{S} is the largest uncertainty in theoretical calculation
of $E_{\mathrm{hfs}}\left(e^{-} p\right)$

Chronology for Δ_{S}

- Zemach, PR104(56)1771, calculates hfs contribution from proton form factors.
- Drell and Sullivan, PR154(67)1477, calculate the polarizability contribution to hydrogen hfs.
- De Rafael, PL37B(71)201, sets bounds on the polarizability.
- Faustov and Martynenko, EPJC24(02)281, estimate polarizability contribution to hydrogen hfs.
- Friar and Sick, PLB579(04)285, determine the Zemach radius from world form factor data.
- Brodsky, Carlson, Hiller and Hwang, PRL94(05) 022001, determine Zemach radius via Faustov.
- The inconsistencies call for an updated determination of the polarizability contribution.

Hyperfine Splitting

- Feynman diagrams for proton polarizability term in the hydrogen hyperfine splitting

Ground-state hyperfine splittings have been measured to 13-digit accuracy. The largest theoretical uncertainty comes from Δ_{S} (proton structure).
$E_{\mathrm{HFS}}\left(e^{-} p\right)=1.4204057517667(9) \mathrm{GHz}=\left(1+\Delta_{Q E D}+\Delta_{R}^{p}+\Delta_{S}\right) E_{F}^{p}$
$E_{\mathrm{HFS}}\left(e^{-} \mu^{+}\right)=4.463302765(53) \mathrm{GHz}=\left(1+\Delta_{Q E D}+\Delta_{R}^{\mu}\right) E_{F}^{\mu}$ in which the Fermi energy $E_{F}^{N}=\frac{8}{3} \alpha^{4} \mu_{N} \frac{m_{e}^{2} m_{N}^{2}}{\left(m_{N}+m_{e}\right)^{3}}$

- Brodsky, Carlson, Hiller, Hwang use hydrogen and muonium to extract $\Delta_{S}=-38.62(16) \mathrm{ppm}$.
- $\Delta_{S}=\Delta_{Z}+\Delta_{\mathrm{pol}}$
- Zemach: $\Delta_{Z}=-2 \alpha m_{e}\langle r\rangle_{Z}\left(1+\delta_{Z}^{\mathrm{rad}}\right)$
- Karshenboim, PLA225(97)97: $\delta_{Z}^{\mathrm{rad}}=\frac{\alpha}{3 \pi}\left[2 \ln \frac{\Lambda^{2}}{m^{2}}-\frac{4111}{420}\right]$
- $\langle r\rangle_{Z}=-\frac{4}{\pi} \int_{0}^{\infty} \frac{d Q}{Q^{2}}\left[G_{E}\left(Q^{2}\right) \frac{G_{M}\left(Q^{2}\right)}{1+\kappa}-1\right]$
- $\Delta_{\mathrm{pol}}=\frac{\alpha m_{e}}{2 \pi(1+\kappa) M}\left(\Delta_{1}+\Delta_{2}\right)=(0.2264798 \mathrm{ppm})\left(\Delta_{1}+\Delta_{2}\right)$
- Friar and Sick: $\langle r\rangle_{Z}=1.086 \pm 0.012 \mathrm{fm}$ from
experiment. $\Delta_{Z}=-41.0(5) \mathrm{ppm}$.
- This all would imply that $\Delta_{\text {pol }}=2.38(58) \mathrm{ppm}$.
- Faustov and Martynenko obtain $\Delta_{\text {pol }}=1.4 \pm 0.6 \mathrm{ppm}$ from a model loosely constrained by SLAC E143 data.

Polarization Terms

$$
\begin{gathered}
\Delta_{1}=\frac{9}{4} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}}\left\{F_{2}^{2}\left(Q^{2}\right)-4 M \int_{\nu_{\mathrm{th}}}^{\infty} \frac{d \nu}{\nu^{2}} \beta_{1}(\tau) g_{1}\left(\nu, Q^{2}\right)\right\} \\
\Delta_{2}=-12 M \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} \int_{\nu_{\mathrm{th}}}^{\infty} \frac{d \nu}{\nu^{2}} \beta_{2}(\tau) g_{2}\left(\nu, Q^{2}\right)
\end{gathered}
$$

in which

- $\nu_{\mathrm{th}}=m_{\pi}+\frac{m_{\pi}^{2}+Q^{2}}{2 M}$
- $F_{2}\left(Q^{2}\right)$ is the Pauli form factor
- $\tau=\frac{\nu^{2}}{Q^{2}}$
- g_{1} and g_{2} are the polarized structure functions
- and $\beta_{1,2}$ are kinematic functions

$$
\begin{aligned}
& \Delta_{1}=\frac{9}{4} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}}\left\{F_{2}^{2}\left(Q^{2}\right)+\frac{8 M^{2}}{Q^{2}} \int_{0}^{x_{\mathrm{th}}} d x \beta_{1}(\tau) g_{1}\left(x, Q^{2}\right)\right\} \\
& \Delta_{2}=-24 M^{2} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{4}} \int_{0}^{x_{\mathrm{th}}} d x \beta_{2}(\tau) g_{2}\left(x, Q^{2}\right) \\
& -x_{\mathrm{th}}=\frac{Q^{2}}{Q^{2}+m_{\pi}^{2}+2 M m_{\pi}}
\end{aligned}
$$

- Advantage: experiments evaluate $\int f(x) g_{1,2} d x$, so error analysis is simplified.
- Disadvantage: large, canceling integrands as $Q^{2} \rightarrow 0$.
- $\tau=\frac{\nu^{2}}{Q^{2}}=\frac{Q^{2}}{4 M^{2} x^{2}}$
- $\beta_{1}(\tau)=$
$\frac{4}{9}\left[-3 \tau+2 \tau^{2}+2(2-\tau) \sqrt{\tau(\tau+1)}\right]$
- $\beta_{2}(\tau)=1+2 \tau-2 \sqrt{\tau(\tau+1)}$
- $\beta_{1}(\tau) \rightarrow 0$ as $\tau \rightarrow 0$
- $\beta_{1}(\tau) \rightarrow 1$ as $\tau \rightarrow \infty$
- $\beta_{2}(\tau) \rightarrow 1$ as $\tau \rightarrow 0$
- $\beta_{2}(\tau) \rightarrow 1 / 4 \tau$ as $\tau \rightarrow \infty$
e $\int \beta_{1} g_{1} d x \sim(0.8-1.0) \times \Gamma_{1}$
- $\int \beta_{2} g_{2} d x \sim(0.0-0.2) \times \Gamma_{2}$

Integrals

Comparisons between $\Gamma_{1}=\int g_{1} d x$ and $B_{1}=\int \beta_{1} g_{1} d x$ and between $\Gamma_{2}=\int g_{2} d x$ and $B_{2}=\int \beta_{2} g_{2} d x$

- $B_{1} \approx \Gamma_{1}$
- $B_{2} \approx 0$
- Experimentally, errors on Γ_{1} are understood; we exploit this fact.
- $\Gamma_{2}=\int g_{2} d x \neq 0$ at low Q^{2}.

Model g_{1} and g_{2}

- MAID parameterization in resonance region - E155 fit in DIS region - $g_{2}^{W W}$ in DIS region - $Q^{2}=$
0.001, 0.01, 0.1, 1.0, 10.0

CLAS spectrometer

$E_{e}=1.2-5.8 \mathrm{GeV}$ ${ }^{15} \mathrm{NH}_{3}$ and ${ }^{15} \mathrm{ND}_{3}$ targets
Luminosity: $10^{34} / \mathrm{cm}^{2} \mathrm{~s}$ green: EM calorimeter magenta: Cherenkov red: TOF scintillators blue: drift chambers yellow: SC magnet

CLAS g_{1} with Model

- Preliminary CLAS g_{1} data
- $0.05<Q^{2}<4.2 \mathrm{GeV}^{2}$
- Red line: Model
- Model reproduces the data quite well over the full range kinematics.

$\Gamma_{1,2}$ Data

SLAC E155x data with the model

PRELIMINARY eg2000 (CLAS) data with the model

- Left plot: E155x data for $\Gamma_{2}=\int g_{2}\left(x, Q^{2}\right) d x$ with model (green, upper curve) and $B_{2}=\int \beta_{2} g_{2} d x$ (blue, lower curve)
- Right plot: CLAS data for $\Gamma_{1}=\int g_{1}\left(x, Q^{2}\right) d x$ with model (green, upper curve) and $B_{1}=\int \beta_{1} g_{1} d x$ (blue, lower curve)

william \Leftarrow mary Best Form Factor Fits

- Kelly: PRC70(04)068202
$G\left(Q^{2}\right)=\frac{1+a_{1} \tau}{1+b_{1} \tau+b_{2} \tau^{2}+b_{3} \tau_{3}}$
- Fit has good behavior both at low Q^{2} and high Q^{2}.

- Δ_{1} converges with this fit.
- Running integrals over Q^{2}
- Magenta: $\Delta_{\text {pol }}$ up to $Q^{2}=0.05 \mathrm{GeV}^{2}$
- Red: $\Delta_{1}^{g_{1}}$ for $\left[0.05, Q^{2}\right]$
- Blue: Δ_{2} for $\left[0.05, Q^{2}\right]$
- Green: $\Delta_{1}^{F_{2}}$ for
[0.05, Q^{2}]
- Cyan: $\Delta_{\text {pol }}=\Delta_{1}^{g_{1}}+$ $\Delta_{2}+\Delta_{1}^{F_{2}}$

Running integrals of the components of $\Delta_{\text {pol }}$

- $G_{E}=F_{1}-\frac{Q^{2}}{4 M^{2}} F_{2}$

$$
G_{M}=F_{1}+F_{2}
$$

- $F_{2}(0)=\kappa \quad F_{1}(0)=1 \quad G_{E}(0)=1 \quad G_{M}(0)=1+\kappa$
- $\left\langle r_{E}^{2}\right\rangle=-\left.\frac{6}{G_{E}(0)} \frac{d G_{E}\left(Q^{2}\right)}{d Q^{2}}\right|_{0} \quad\left\langle r_{M}^{2}\right\rangle=-\left.\frac{6}{G_{M}(0)} \frac{d G_{M}\left(Q^{2}\right)}{d Q^{2}}\right|_{0}$
- $\left.\frac{d F_{2}}{d Q^{2}}\right|_{0}=\left.\frac{d G_{M}}{d Q^{2}}\right|_{0}-\left.\frac{d G_{E}}{d Q^{2}}\right|_{0}-\frac{\kappa}{4 M^{2}}$
- Friar and Sick:
$\left\langle r_{E}^{2}\right\rangle=(0.895 \pm 0.018 \mathrm{fm})^{2} \quad\left\langle r_{M}^{2}\right\rangle=(0.855 \pm 0.035 \mathrm{fm})^{2}$
- GDH Sum Rule: $\frac{\Gamma_{1}}{Q^{2}}=-\frac{\kappa^{2}}{8 M^{2}}$ as $Q^{2} \rightarrow 0$
- $\Delta_{1}^{[0,0.05]}=\frac{9}{4} \int_{0}^{0.05} \frac{d Q^{2}}{Q^{2}}\left\{\kappa^{2}+\left.2 \kappa \frac{d F_{2}}{d Q^{2}}\right|_{0} Q^{2}-\kappa^{2}\right\}$
- $\kappa=1.79284739(6)$
$M=0.938272029(80) \mathrm{GeV}$
- $\Delta_{1}^{[0,0.05]}=-2.35 \pm 0.30 \quad(-2.07)$ in 2nd order
- Bosted form factor fit: $\Delta_{1}^{[0,0.05]}=-2.44301$
- Hall A ${ }^{3} \mathrm{He}$ data show $g_{2} \approx-g_{1}$ for the neutron at low Q^{2}.
- $g_{1}+g_{2} \propto \sigma_{L T}$ which should go to zero as $Q^{2} \rightarrow 0$.
- $\beta_{2}(\tau) \rightarrow \frac{1}{4 \tau}$ as $\tau \rightarrow \infty$ with
$\tau=\frac{Q^{2}}{4 M^{2} x^{2}}$. Therefore, $\beta_{2}=0$ at $x=0$ and $\beta_{2}=\frac{M^{2} Q^{2}}{\left(Q^{2}+m^{2}\right)^{2}}$ at $x_{\text {th }}$, with $m^{2}=m_{\pi}^{2}+2 M m_{\pi}$
- Take average β_{2} and $g_{2}=-g_{1}$
- $\Delta_{2}^{[0,0.05]}=$
$-24 M^{2} \int_{0}^{0.05} \frac{d Q^{2}}{Q^{4}} \frac{M^{2} Q^{2}}{2\left(Q^{2}+m^{2}\right)^{2}}\left(\frac{\kappa^{2}}{8 M^{2}} Q^{2}\right)$
$=-2.276$ (numerically incorrect, but integral converges!)

- $\langle r\rangle_{Z}=-\frac{4}{\pi} \int_{0}^{\infty} \frac{d Q}{Q^{2}}\left[G_{E}\left(Q^{2}\right) \frac{G_{M}\left(Q^{2}\right)}{1+\kappa}-1\right]$
- Unless G_{E} and G_{M} go as $1+\epsilon Q^{2}$, the Zemach radius diverges.
- Bosted fit, PRC51(95)409:
$G_{E}=1 /\left(1+0.14 Q+3.01 Q^{2}+0.02 Q^{3}+1.20 Q^{4}+0.32 Q^{5}\right)$ and $G_{M}=(1+\kappa) G_{E}$ fits all data well; yet the Zemach integral diverges.
- JLab fit, ARNPS54(04)217,
$(1+\kappa) G_{E} / G_{M}=1-0.13\left(Q^{2}-0.29\right)$ yields a divergent $\langle r\rangle_{Z}$.
- Friar and Sick's analysis assumes a convergent Q^{2} dependence (reasonable); however, data alone are consistent with $\langle r\rangle_{Z}=\infty$.

Results

term	$Q^{2}\left(\mathrm{GeV}^{2}\right)$	value	component
Δ_{1}	$[0,0.05]$	-2.44 ± 1.2	
	$[0.05,20]$	7.22 ± 0.72	F_{2}
	$[20, \infty]$	-1.10 ± 0.55	g_{1}
		0.00 ± 0.01	F_{2}
	$[0,0.05]$	-0.28 ± 0.28	$($ Simula/Kelly)
	$[0.05,20]$	-0.33 ± 0.33	$(\mathrm{PRD} 25,034017)$
total	$[20, \infty]$	0.00 ± 0.01	g_{1}
Δ_{2}		-0.61 ± 0.61	(-1.86 ± 0.36)
		$0.72 \pm 0.37 \mathrm{ppm}$	(0.38 ± 0.37)
total			
$\Delta_{\text {pol }}$			

- $\Delta_{\text {pol }}$ is dominated by F_{2} with a smaller (canceling) contribution from g_{1}, and a small contribution from g_{2}.
- Most of $\Delta_{\text {pol }}$ comes from $Q^{2}<1 \mathrm{GeV}^{2}$.
- Unless $F_{2} \rightarrow \kappa+\epsilon Q^{2}$ and $\Gamma_{1}=-\kappa^{2} Q^{2} / 8 M^{2}$
(generalized GDH Sum Rule) as $Q^{2} \rightarrow 0, \Delta_{1}, \Delta_{Z}$ diverge.
- If $\Gamma_{2} \rightarrow \kappa^{2} Q^{2} / 8 M^{2}\left(g_{2}=-g_{1}\right.$ and GDH) as $Q^{2} \rightarrow 0, \Delta_{2}$ converges.
- $\Delta_{\text {pol }}=0.7 \pm 0.4 \mathrm{ppm}$ is small compared to
$\Delta_{\text {pol }}=2.4 \pm 0.6 \mathrm{ppm}$ from the HFS+Zemach analysis.
- Discrepancy most likely lies in the low- Q^{2} dependencies of g_{1}, g_{2}, G_{E} and G_{M}.

Generalized Sums

- $\sigma_{1 / 2}=\frac{4 \pi^{2} \alpha}{K M}\left(F_{1}+g_{1}-g_{2} / \tau\right) ; \sigma_{3 / 2}=\frac{4 \pi^{2} \alpha}{K M}\left(F_{1}-g_{1}+g_{2} / \tau\right)$

$$
\sigma_{L T}=\frac{4 \pi^{2} \alpha}{K M} \frac{Q}{\nu}\left(g_{1}+g_{2}\right) ; \quad W^{2}=M^{2}+2 M K ; \quad 1-x \approx 1
$$

- $\frac{-\kappa^{2}}{8 M^{2}}=\frac{\alpha}{16 \pi^{2}} \int_{\nu_{\text {th }}}^{\infty} d \nu \frac{\sigma_{1 / 2}-\sigma_{3 / 2}}{\nu}=\frac{1}{Q^{2}} \int_{0}^{x_{\mathrm{th}}} d x\left(g_{1}-g_{2} / \tau\right)$
- Polarizability: $\gamma_{0}=-0.94 \pm 0.15 \times 10^{-4} \mathrm{fm}^{4}=$
$-\frac{1}{4 \pi^{2}} \int_{\nu_{\mathrm{th}}}^{\infty} \frac{d \nu}{\nu^{3}}\left(\sigma_{1 / 2}-\sigma_{3 / 2}\right)=-\frac{16 \alpha M^{2}}{Q^{6}} \int_{0}^{x_{\mathrm{th}}} d x x^{2}\left(g_{1}-g_{2} / \tau\right)$
- $\delta_{L T}=\frac{1}{2 \pi^{2}} \int_{\nu_{\text {th }}}^{\infty} \frac{d \nu}{Q \nu^{2}} \sigma_{L T}=\frac{16 \alpha M^{2}}{Q^{6}} \int_{0}^{x_{\mathrm{th}}} d x x^{2}\left(g_{1}+g_{2}\right)$
- $\Gamma_{1}=-\frac{\kappa^{2}}{8 M^{2}} Q^{2}+\frac{M \delta_{L T}}{4 \alpha} Q^{4}+\frac{\gamma_{0} M}{4 \alpha} Q^{6}+\ldots=$ $-0.456 Q^{2}+32.144 \delta_{L T} Q^{4}-1.993 Q^{6}$
- Fit to data: $\delta_{L T} \approx 1.3 \times 10^{-4} \mathrm{fm}^{4}$.
- Can the generalized sum rules be extended to $Q^{2}=0.05-0.1$? More data will tell.
- CLAS E03-006: The GDH Sum Rule with Nearly Real Photons and the Proton g_{1} Structure Function at Low Momentum Transfer
- No measurements of g_{2} with transverse targets are planned at CLAS.

Conclusions

- Determination of $\Delta_{\text {pol }}$ can be improved only by precision data for g_{1}, g_{2} and F_{2} with $Q^{2}<1 \mathrm{GeV}^{2}$
- The behavior of g_{1}, g_{2}, and F_{2} for $Q^{2}<0.05$ is crucial, since a large part of $\Delta_{\text {pol }}$ comes from this region.
- Although beautiful g_{1} data exist from CLAS at JLab over a large kinematic region, the errors on this part are dominated by the lowest Q^{2} data.
- Finite hyperfine splittings imply: $\Gamma_{1} \rightarrow-\kappa^{2} Q^{2} / 8 M^{2}$ $g_{2} \rightarrow-g_{1}, F_{2} \rightarrow \kappa-\epsilon Q^{2}, G_{E} \rightarrow 1-\epsilon_{E} Q^{2}$, and $G_{M} /(1+\kappa) \rightarrow 1-\epsilon_{M} Q^{2}$ as $Q^{2} \rightarrow 0$.
- Higher orders (Q^{4}, Q^{6}, etc.) are crucial at low Q^{2} for an accurate determination of Δ_{pol}.

Questions

- Page 4: Verify that the expectation value of the first term in H is zero.
- Page 8: Show that E_{F}^{N} is the same as E_{F}^{p} on Page 4.
- Page 11: Derive Δ_{1} and Δ_{2} from the forms given on Page 10.
- Page 11: Derive the expression for x_{th}.
- Page 12: Expand β_{1} and β_{2} to two terms in τ as $\tau \rightarrow 0$ and $\tau \rightarrow \infty$.
- Page 25: Derive Γ_{1} from the formulas above.
- Extra Credit: Find the mistakes in my formulae.

