

New experimental constraints on the polarizability corrections in the hydrogen hyperfine structure

Keith Griffioen

email: griff@physics.wm.edu

Dept. of Physics

College of William & Mary, Williamsburg, VA

- Introduction to the world's smallest electron accelerator
- How I became amazed that the hyperfine splittings in hydrogen are not infinite
- Prerequisites: $Q^2, x = Q^2/2M\nu$
 - Elastic form factors: $G_E(Q^2)$, $G_M(Q^2)$, $F_1(Q^2)$,
 - $F_2(Q^2)$

Inelastic structure functions: $F_1(x, Q^2)$, $F_2(x, Q^2)$, $q_1(x, Q^2)$, $q_2(x, Q^2)$

The College of ——— WILLIAM & MARY

Hyperfine Splittings

•
$$\vec{\mu}_p = \frac{ge}{2M} \mathbf{S}_p$$
 and $\vec{\mu}_e = -\frac{e}{m} \mathbf{S}_e$
 $g = 5.59, M$ (m) is proton (electron) mass
• $\mathbf{B} = \frac{\mu_0}{4\pi r^3} [3(\vec{\mu} \cdot \hat{r})\hat{r} - \vec{\mu}] + \frac{2\mu_0}{3}\vec{\mu}\delta^3(\mathbf{r})$ (dipole)
 $H = -\vec{\mu}_e \cdot \mathbf{B}_p = \frac{\mu_0 ge^2}{8\pi Mm} \frac{[3(\mathbf{S}_p \cdot \hat{\mathbf{r}}) - \mathbf{S}_p \cdot \mathbf{S}_e]}{r^3} + \frac{\mu_0 ge^2}{3Mm} \mathbf{S}_p \cdot \mathbf{S}_e \delta^3(\mathbf{r})$
Expectation value of first term vanishes
• $E_{hf} = \frac{\mu_0 ge^2}{3\pi Mma^3} (\mathbf{S}_p \cdot \mathbf{S}_e)$ using ψ_{100}
• $\mathbf{S} = \mathbf{S}_e + \mathbf{S}_p$ implies $\mathbf{S}_p \cdot \mathbf{S}_e = \frac{1}{2}(S^2 - S_e^2 - S_p^2) = -\frac{3}{4}(\frac{1}{4})$
for $S = 0(1)$.
• $\Delta E \equiv E_F^p = \frac{4g\hbar^4}{3Mmc^2a^4} = 5.88 \times 10^{-6}$ eV (Fermi energy)
• $\nu = \frac{\Delta E}{h} = 1.420$ GHz; $\lambda = \frac{c}{\nu} = 21$ cm.

This 21 cm line is ubiquitous in the universe.

Doppler broadening is greatly reduced with two photons

• A moving atom sees a photon with energy $\gamma(1 + \beta)k \approx (1 + \beta)k$, but sees a combined two-photon energy of $\gamma 2k' \approx (1 + \beta^2/2)2k'$ for $\beta << 1$. Scanned absorption spectrum is much narrower for 2 photons. **Double Photon Absorption** ΔE

(see F. Biraben *et al.*, Springer LNP570(01)17.)

- see Brodsky, Carlson, Hiller and Hwang, PRL94(05)022001,169902(E).
- $E_{\rm hfs}(e^-p) = E_F^p (1 + \Delta_{\rm QED} + \Delta_R^p + \Delta_S + \Delta_{\rm hvp}^p + \Delta_{\mu \rm vp}^p + \Delta_{\rm weak}^p) = 1.4204057517667(9) \text{GHz}$
- $\Delta_{\text{QED}} = 1136.09(14) \text{ ppm } (\frac{\alpha}{2\pi} + ...)$
- $\Delta_R^p = 5.86(15)$ ppm (recoil)
- $\Delta_{hvp}^{\tilde{p}} = 0.01$ ppm (hadronic vacuum polarization)
- $\Delta_{\mu\nu p}^{p} = 0.07$ ppm (muonic vacuum polarization)
- $\Delta_{\text{weak}}^p = 0.06 \text{ ppm}$ (weak interaction)
- $\Delta_S = -38.62(16)$ ppm (nucleon structure; deduced)
- Δ_S is the largest uncertainty in theoretical calculation of $E_{\rm hfs}(e^-p)$

- Zemach, PR104(56)1771, calculates hfs contribution from proton form factors.
- Drell and Sullivan, PR154(67)1477, calculate the polarizability contribution to hydrogen hfs.
- De Rafael, PL37B(71)201, sets bounds on the polarizability.
- Faustov and Martynenko, EPJC24(02)281, estimate polarizability contribution to hydrogen hfs.
- Friar and Sick, PLB579(04)285, determine the Zemach radius from world form factor data.
- Brodsky, Carlson, Hiller and Hwang, PRL94(05) 022001, determine Zemach radius via Faustov.
- The inconsistencies call for an updated determination of the polarizability contribution.

Hyperfine Splitting

Feynman diagrams for proton polarizability term in the hydrogen hyperfine splitting

Ground-state hyperfine splittings have been measured to 13-digit accuracy. The largest theoretical uncertainty comes from Δ_S (proton structure).

 $E_{\rm HFS}(e^-p) = 1.4204057517667(9) \text{GHz} = (1 + \Delta_{QED} + \Delta_R^p + \Delta_S) E_F^p$

 $E_{\rm HFS}(e^-\mu^+) = 4.463302765(53) \text{GHz} = (1 + \Delta_{QED} + \Delta_R^{\mu}) E_F^{\mu}$ in which the Fermi energy $E_F^N = \frac{8}{3} \alpha^4 \mu_N \frac{m_e^2 m_N^2}{(m_N + m_e)^3}$

- Brodsky, Carlson, Hiller, Hwang use hydrogen and muonium to extract $\Delta_S = -38.62(16)$ ppm.
- $\Delta_S = \Delta_Z + \Delta_{\text{pol}}$
- Zemach: $\Delta_Z = -2\alpha m_e \langle r \rangle_Z (1 + \delta_Z^{rad})$
- Karshenboim, PLA225(97)97: $\delta_Z^{\text{rad}} = \frac{\alpha}{3\pi} [2 \ln \frac{\Lambda^2}{m^2} \frac{4111}{420}]$ • $\langle r \rangle_Z = -\frac{4}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left[G_E(Q^2) \frac{G_M(Q^2)}{1+\kappa} - 1 \right]$
- $\Delta_{\text{pol}} = \frac{\alpha m_e}{2\pi (1+\kappa)M} (\Delta_1 + \Delta_2) = (0.2264798 \text{ ppm})(\Delta_1 + \Delta_2)$
- Friar and Sick: $\langle r \rangle_Z = 1.086 \pm 0.012$ fm from experiment. $\Delta_Z = -41.0(5)$ ppm.
- This all would imply that $\Delta_{pol} = 2.38(58)$ ppm.
- Faustov and Martynenko obtain $\Delta_{pol} = 1.4 \pm 0.6$ ppm from a model loosely constrained by SLAC E143 data.

Polarization Terms

$$\Delta_1 = \frac{9}{4} \int_0^\infty \frac{dQ^2}{Q^2} \left\{ F_2^2(Q^2) - 4M \int_{\nu_{\rm th}}^\infty \frac{d\nu}{\nu^2} \beta_1(\tau) g_1(\nu, Q^2) \right\}$$

$$\Delta_2 = -12M \int_0^\infty \frac{dQ^2}{Q^2} \int_{\nu_{\rm th}}^\infty \frac{d\nu}{\nu^2} \beta_2(\tau) g_2(\nu, Q^2)$$

in which

- $\nu_{\rm th} = m_{\pi} + \frac{m_{\pi}^2 + Q^2}{2M}$
- $F_2(Q^2)$ is the Pauli form factor
- $T = \frac{\nu^2}{Q^2}$
- g_1 and g_2 are the polarized structure functions
- **•** and $\beta_{1,2}$ are kinematic functions

x Integrals

$$\Delta_1 = \frac{9}{4} \int_0^\infty \frac{dQ^2}{Q^2} \left\{ F_2^2(Q^2) + \frac{8M^2}{Q^2} \int_0^{x_{\rm th}} dx \beta_1(\tau) g_1(x, Q^2) \right\}$$

$$\Delta_2 = -24M^2 \int_0^\infty \frac{dQ^2}{Q^4} \int_0^{x_{\rm th}} dx \beta_2(\tau) g_2(x, Q^2)$$

•
$$x_{\rm th} = \frac{Q^2}{Q^2 + m_\pi^2 + 2Mm_\pi}$$

• Advantage: experiments evaluate $\int f(x)g_{1,2}dx$, so error analysis is simplified.

• Disadvantage: large, canceling integrands as $Q^2 \rightarrow 0$.

 $\beta_1(au)$ and $\beta_2(au)$

0.2

0

0.6

Х

0.4

0.8

1

Bosen05 050906 - p.12/2

1.4

1.2

Comparisons between $\Gamma_1 = \int g_1 dx$ and $B_1 = \int \beta_1 g_1 dx$ and between $\Gamma_2 = \int g_2 dx$ and $B_2 = \int \beta_2 g_2 dx$

• $B_1 \approx \Gamma_1$ • $B_2 \approx 0$ • Experimentally, errors on Γ_1 are understood; we exploit this fact. • $\Gamma_2 = \int g_2 dx \neq 0$ at low Q^2 .

MAID parameterization in resonance region
E155 fit in DIS region
g₂^{WW} in DIS region
Q² =
0.001, 0.01, 0.1, 1.0, 10.0

CLAS spectrometer

 $E_e = 1.2-5.8 \text{ GeV}$ ¹⁵NH₃ and ¹⁵ND₃ targets Luminosity: 10³⁴/cm²s green: EM calorimeter magenta: Cherenkov red: TOF scintillators blue: drift chambers yellow: SC magnet

CLAS g_1 with Model

- Preliminary CLAS g_1 data
- $0.05 < Q^2 < 4.2 \text{ GeV}^2$
- Red line: Model
- Model reproduces the data quite well over the full range kinematics.

 $\Gamma_{1,2}$ Data

• Left plot: E155x data for $\Gamma_2 = \int g_2(x, Q^2) dx$ with model (green, upper curve) and $B_2 = \int \beta_2 g_2 dx$ (blue, lower curve) • Right plot: CLAS data for $\Gamma_1 = \int g_1(x, Q^2) dx$ with model (green, upper curve) and $B_1 = \int \beta_1 g_1 dx$ (blue, lower curve)

Kelly: PRC70(04)068202
G(Q²) = 1+a₁τ/(1+b₁τ+b₂τ²+b₃τ₃)
Fit has good behavior both at low Q² and high Q².
Δ₁ converges with this fit.

WILLIAM & MARY

The College of -

- over Q^2
- Magenta: Δ_{pol} up to
- Red: $\Delta_1^{g_1}$ for $[0.05, Q^2]$
- Blue: Δ_2 for $[0.05, Q^2]$
- Green: $\Delta_1^{F_2}$ for $[0.05, Q^2]$
 - -4

Running integrals of the components of Δ_{nol}

Contributions to Δ_{pol}

 Δ_1 at low Q^2

 Δ_2 at low Q^2

- $\langle r \rangle_Z = -\frac{4}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left[G_E(Q^2) \frac{G_M(Q^2)}{1+\kappa} 1 \right]$
- Unless G_E and G_M go as $1 + \epsilon Q^2$, the Zemach radius diverges.
- Bosted fit, PRC51(95)409:

 $G_E = 1/(1 + 0.14Q + 3.01Q^2 + 0.02Q^3 + 1.20Q^4 + 0.32Q^5)$ and $G_M = (1 + \kappa)G_E$ fits all data well; yet the Zemach integral diverges.

JLab fit, ARNPS54(04)217,

 $(1 + \kappa)G_E/G_M = 1 - 0.13(Q^2 - 0.29)$ yields a divergent $\langle r \rangle_Z$.

• Friar and Sick's analysis assumes a convergent Q^2 dependence (reasonable); however, data alone are consistent with $\langle r \rangle_Z = \infty$.

term	Q^2 (GeV ²)	value	component
Δ_1	[0, 0.05]	-2.44 ± 1.2	
	[0.05, 20]	7.22 ± 0.72	F_2
		-1.10 ± 0.55	g_1
	$[20,\infty]$	0.00 ± 0.01	F_2
		0.12 ± 0.01	g_1
total		3.80 ± 1.5	(3.55 ± 1.27)
Δ_2	[0, 0.05]	-0.28 ± 0.28	(Simula/Kelly)
	[0.05, 20]	-0.33 ± 0.33	(PRD 65 ,034017)
	$[20,\infty]$	0.00 ± 0.01	
total		-0.61 ± 0.61	(-1.86 ± 0.36)
$\Delta_{\rm pol}$		$0.72 \pm 0.37 \text{ ppm}$	(0.38 ± 0.37)

The College of ______ WILLIAM & MARY

- Δ_{pol} is dominated by F_2 with a smaller (canceling) contribution from g_1 , and a small contribution from g_2 .
- Most of Δ_{pol} comes from $Q^2 < 1$ GeV².
- Unless $F_2 \rightarrow \kappa + \epsilon Q^2$ and $\Gamma_1 = -\kappa^2 Q^2 / 8M^2$ (generalized GDH Sum Rule) as $Q^2 \rightarrow 0$, Δ_1, Δ_Z diverge.
- If $\Gamma_2 \rightarrow \kappa^2 Q^2 / 8M^2$ ($g_2 = -g_1$ and GDH) as $Q^2 \rightarrow 0$, Δ_2 converges.
- $\Delta_{\rm pol} = 0.7 \pm 0.4$ ppm is small compared to
- $\Delta_{pol} = 2.4 \pm 0.6$ ppm from the HFS+Zemach analysis. • Discrepancy most likely lies in the low- Q^2
- dependencies of g_1 , g_2 , G_E and G_M .

•
$$\sigma_{1/2} = \frac{4\pi^2 \alpha}{KM} (F_1 + g_1 - g_2/\tau); \sigma_{3/2} = \frac{4\pi^2 \alpha}{KM} (F_1 - g_1 + g_2/\tau)$$

 $\sigma_{LT} = \frac{4\pi^2 \alpha Q}{KM} (g_1 + g_2); \quad W^2 = M^2 + 2MK; \quad 1 - x \approx 1$
• $\frac{-\kappa^2}{8M^2} = \frac{\alpha}{16\pi^2} \int_{\nu_{\text{th}}}^{\infty} d\nu \frac{\sigma_{1/2} - \sigma_{3/2}}{\nu} = \frac{1}{Q^2} \int_0^{x_{\text{th}}} dx (g_1 - g_2/\tau)$
• Polarizability: $\gamma_0 = -0.94 \pm 0.15 \times 10^{-4} \text{ fm}^4 = -\frac{1}{4\pi^2} \int_{\nu_{\text{th}}}^{\infty} \frac{d\nu}{\nu^3} (\sigma_{1/2} - \sigma_{3/2}) = -\frac{16\alpha M^2}{Q^6} \int_0^{x_{\text{th}}} dx x^2 (g_1 - g_2/\tau)$
• $\delta_{LT} = \frac{1}{2\pi^2} \int_{\nu_{\text{th}}}^{\infty} \frac{d\nu}{Q\nu^2} \sigma_{LT} = \frac{16\alpha M^2}{Q^6} \int_0^{x_{\text{th}}} dx x^2 (g_1 + g_2)$
• $\Gamma_1 = -\frac{\kappa^2}{8M^2} Q^2 + \frac{M\delta_{LT}}{4\alpha} Q^4 + \frac{\gamma_0 M}{4\alpha} Q^6 + ... = -0.456Q^2 + 32.144\delta_{LT} Q^4 - 1.993Q^6$
• Fit to data: $\delta_{LT} \approx 1.3 \times 10^{-4} \text{ fm}^4.$

• Can the generalized sum rules be extended to $Q^2 = 0.05 - 0.1$? More data will tell.

New Measurements

• No measurements of g_2 with transverse targets are planned at CLAS.

The College of -

WILLIAM & MARY

- Determination of Δ_{pol} can be improved only by precision data for g_1 , g_2 and F_2 with $Q^2 < 1 \text{ GeV}^2$
- The behavior of g_1 , g_2 , and F_2 for $Q^2 < 0.05$ is crucial, since a large part of $\Delta_{\rm pol}$ comes from this region.
- Although beautiful g_1 data exist from CLAS at JLab over a large kinematic region, the errors on this part are dominated by the lowest Q^2 data.
- Finite hyperfine splittings imply: $\Gamma_1 \to -\kappa^2 Q^2/8M^2$ $g_2 \to -g_1, F_2 \to \kappa - \epsilon Q^2, G_E \to 1 - \epsilon_E Q^2$, and $G_M/(1+\kappa) \to 1 - \epsilon_M Q^2$ as $Q^2 \to 0$.
- Higher orders (Q^4, Q^6 , etc.) are crucial at low Q^2 for an accurate determination of Δ_{pol} .

- Page 4: Verify that the expectation value of the first term in H is zero.
- Page 8: Show that E^N_F is the same as E^p_F on Page
 4.
- Page 11: Derive Δ_1 and Δ_2 from the forms given on Page 10.
- Page 11: Derive the expression for $x_{\rm th}$.
- Page 12: Expand β_1 and β_2 to two terms in τ as $\tau \to 0$ and $\tau \to \infty$.
- **Page 25:** Derive Γ_1 from the formulas above.
- Extra Credit: Find the mistakes in my formulae.