

New experimental constraints on the polarizability corrections in the hydrogen hyperfine structure

Keith Griffioen

Vahagn Nazaryan and Carl Carlson

email: griff@physics.wm.edu

Dept. of Physics

College of William & Mary, Williamsburg, VA

- It has long been known that nuclear structure influences hyperfine splittings in atoms.
- Zemach, PR104(56)1771, calculates hfs contribution from proton form factors.
- Drell and Sullivan, PR154(67)1477, calculate the polarizability contribution to hydrogen hfs.
- Faustov and Martynenko, EPJC24(02)281, estimate polarizability contribution to hydrogen hfs.
- Friar and Sick, PLB579(04)285, determine the Zemach radius from world form factor data.
- Brodsky, Carlson, Hiller and Hwang, PRL94(05) 022001, determine Zemach radius via Faustov.
- The inconsistencies call for an updated determination of the polarizability contribution.

Hyperfine Splitting

Feynman diagrams for proton polarizability term in the hydrogen hyperfine splitting

Ground-state hyperfine splittings have been measured to 13-digit accuracy. The largest theoretical uncertainty comes from Δ_S (proton structure).

 $E_{\rm HFS}(e^-p) = 1.4204057517667(9) \text{GHz} = (1 + \Delta_{QED} + \Delta_R^p + \Delta_S) E_F^p$

 $E_{\rm HFS}(e^-\mu^+) = 4.463302765(53) \text{GHz} = (1 + \Delta_{QED} + \Delta_R^{\mu}) E_F^{\mu}$ in which the Fermi energy $E_F^N = \frac{8}{3} \alpha^4 \mu_N \frac{m_e^2 m_N^2}{(m_N + m_e)^3}$

- Brodsky, Carlson, Hiller, Hwang use hydrogen and muonium to extract an experimental $\Delta_S = -37.66(16)$ ppm.
- $\Delta_S = \Delta_Z + \Delta_{\text{pol}}$
- Zemach: $\Delta_Z = -2\alpha m_e \langle r \rangle_Z (1 + \delta_Z^{rad})$
- $\Delta_{\text{pol}} = \frac{\alpha m_e}{2\pi (1+\kappa)M} (\bar{\Delta}_1 + \Delta_2) = (0.2264798 \text{ ppm}) (\Delta_1 + \Delta_2)$
- Friar and Sick: $\langle r \rangle_Z = 1.086 \pm 0.012$ fm from experiment. $\Delta_Z = -41.0(5)$ ppm.
- This all would imply that $\Delta_{pol} = 3.34(58)$ ppm.
- Faustov and Martynenko obtain $\Delta_{pol} = 1.4 \pm 0.6$ ppm from a model loosely constrained by SLAC E143 data.

Polarization Terms

$$\Delta_1 = \int_0^\infty \frac{dQ^2}{Q^2} \left\{ \frac{9}{4} F_2^2(Q^2) - 4M \int_{\nu_{\rm th}}^\infty \frac{d\nu}{\nu^2} \bar{\beta}_1(\tau) g_1(\nu, Q^2) \right\}$$

$$\Delta_2 = -12M \int_0^\infty \frac{dQ^2}{Q^2} \int_{\nu_{\rm th}}^\infty \frac{d\nu}{\nu^2} \beta_2(\tau) g_2(\nu, Q^2)$$

in which

- $\nu_{\rm th} = m_{\pi} + \frac{m_{\pi}^2 + Q^2}{2M}$
- $F_2(Q^2)$ is the Pauli form factor
- $T = \frac{\nu^2}{Q^2}$
- \bullet g_1 and g_2 are the polarized structure functions
- **•** and $\beta_{1,2}$ are kinematic functions

x Integrals

$$\Delta_1 = \frac{9}{4} \int_0^\infty \frac{dQ^2}{Q^2} \left\{ F_2^2(Q^2) + \frac{8M^2}{Q^2} \int_0^{x_{\rm th}} dx \beta_1(\tau) g_1(x, Q^2) \right\}$$

$$\Delta_2 = -24M^2 \int_0^\infty \frac{dQ^2}{Q^4} \int_0^{x_{\rm th}} dx \beta_2(\tau) g_2(x, Q^2)$$

•
$$x_{\rm th} = \frac{Q^2}{Q^2 + m_\pi^2 + 2Mm_\pi}$$

• Advantage: experiments evaluate $\int f(x)g_{1,2}dx$, so error analysis is simplified.

• Disadvantage: large, canceling integrands as $Q^2 \rightarrow 0$.

 $eta_1(au)$ and $eta_2(au)$

0.2

0.4

0.6

Bjorken x

0.8

1

1.2

1.4

Integrals

Comparisons between $\Gamma_1 = \int g_1 dx$ and $B_1 = \int \beta_1 g_1 dx$ and between $\Gamma_2 = \int g_2 dx$ and $B_2 = \int \beta_2 g_2 dx$

• $B_1 \approx \Gamma_1$ • $B_2 \approx 0$ • Experimentally, errors on Γ_1 are understood; we exploit this fact. • $\Gamma_2 = \int g_2 dx \neq 0$ at low Q^2 .

The College of **WILLIAM & MARY**

MAID parameterization in resonance region
E155 fit in DIS region
g₂^{WW} in DIS region
Q² =
0.001, 0.01, 0.1, 1.0, 10.0

CLAS g_1 with Model

- Preliminary CLAS g_1 data
- $0.05 < Q^2 < 4.2 \text{ GeV}^2$
- Red line: Model
- Model reproduces the data quite well over the full range kinematics.

• Left plot: E155x data for $\Gamma_2 = \int g_2(x, Q^2) dx$ with model (green, upper curve) and $B_2 = \int \beta_2 g_2 dx$ (blue, lower curve) • Right plot: CLAS data for $\Gamma_1 = \int g_1(x, Q^2) dx$ with model (green, upper curve) and $B_1 = \int \beta_1 g_1 dx$ (blue, lower curve)

The College of **WILLIAM & MARY**

Contributions to Δ_{pol}

- Running integrals over Q^2
- Magenta: Δ_{pol} up to $Q^2 = 0.05 \text{ GeV}^2$
- Red: $\Delta_1^{g_1}$ for $[0.05, Q^2]$
- Blue: Δ_2 for $[0.05, Q^2]$
- Green: $\Delta_1^{F_2}$ for $[0.05, Q^2]$
- Cyan: $\Delta_{\text{pol}} = \Delta_1^{g_1} + \Delta_2 + \Delta_1^{F_2}$

 Δ_1 at low Q^2

 Δ_2 at low Q^2

- $\langle r \rangle_Z = -\frac{4}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left[G_E(Q^2) \frac{G_M(Q^2)}{1+\kappa} 1 \right]$
- Unless G_E and G_M go as $1 + \epsilon Q^2$, the Zemach radius diverges.
- Bosted fit, PRC51(95)409:

 $G_E = 1/(1 + 0.14Q + 3.01Q^2 + 0.02Q^3 + 1.20Q^4 + 0.32Q^5)$ and $G_M = (1 + \kappa)G_E$ fits all data well; yet the Zemach integral diverges.

JLab fit, ARNPS54(04)217,

 $(1 + \kappa)G_E/G_M = 1 - 0.13(Q^2 - 0.29)$ yields a divergent $\langle r \rangle_Z$.

• Friar and Sick's analysis assumes a convergent Q^2 dependence (reasonable); however, data alone are consistent with $\langle r \rangle_Z = \infty$.

term	Q^2 (GeV ²)	value	component
Δ_1	[0, 0.05]	-2.44 ± 1.2	
	[0.05, 20]	7.22 ± 0.72	F_2
		-1.10 ± 0.55	g_1
	$[20,\infty]$	0.00 ± 0.01	F_2
		0.12 ± 0.01	g_1
total		3.80 ± 1.5	(3.55 ± 1.27)
Δ_2	[0, 0.05]	-0.28 ± 0.28	
	[0.05, 20]	-0.33 ± 0.33	
	$[20,\infty]$	0.00 ± 0.01	
total		-0.61 ± 0.61	(-1.86 ± 0.36)
$\Delta_{\rm pol}$		$0.72 \pm 0.37 \text{ ppm}$	(0.38 ± 0.37)

The College of ______ WILLIAM & MARY

- Δ_{pol} is dominated by F_2 with a smaller (canceling) contribution from g_1 , and a small contribution from g_2 .
- Most of Δ_{pol} comes from $Q^2 < 1$ GeV².
- Unless $F_2 \rightarrow \kappa + \epsilon Q^2$ and $\Gamma_1 = -\kappa^2 Q^2 / 8M^2$ (generalized GDH Sum Rule) as $Q^2 \rightarrow 0$, Δ_1, Δ_Z diverge.
- If $\Gamma_2 \rightarrow \kappa^2 Q^2 / 8M^2$ ($g_2 = -g_1$ and GDH) as $Q^2 \rightarrow 0$, Δ_2 converges.
- $\Delta_{\rm pol} = 0.7 \pm 0.4$ ppm is small compared to
- $\Delta_{pol} = 3.3 \pm 0.6$ ppm from the HFS+Zemach analysis. • Discrepancy most likely lies in the low- Q^2
- dependencies of g_1 , g_2 , G_E and G_M .

- Determination of Δ_{pol} can be improved only by precision data for g_1 , g_2 and F_2 with $Q^2 < 1 \text{ GeV}^2$
- The behavior of g_1 , g_2 , and F_2 for $Q^2 < 0.05$ is crucial, since a large part of $\Delta_{\rm pol}$ comes from this region.
- Although beautiful g_1 data exist from CLAS at JLab over a large kinematic region, the errors on this part are dominated by the lowest Q^2 data.
- Finite hyperfine splittings imply: $\Gamma_1 \to -\kappa^2 Q^2/8M^2$ $g_2 \to -g_1, F_2 \to \kappa - \epsilon Q^2, G_E \to 1 - \epsilon_E Q^2$, and $G_M/(1+\kappa) \to 1 - \epsilon_M Q^2$ as $Q^2 \to 0$.
- Higher orders (Q^4, Q^6 , etc.) are crucial at low Q^2 for an accurate determination of Δ_{pol} .